Agresti, A. (2002): Categorical data analysis, 359, Hoboken, NJ, USA: John Wiley & Sons.Google Scholar

Anders, S. and W. Huber (2010): “Differential expression analysis for sequence count data,” Genome Biol., 11, R106.CrossrefGoogle Scholar

Auer, P. L. and R. W. Doerge (2011): “A two-stage poisson model for testing rna-seq data,” Stat. Appl. Genet. Mol. Biol., 10, 1–26.Web of ScienceGoogle Scholar

Benjamini, Y. and Y. Hochberg (1995): “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” J. Roy. Stat. Soc. B Met., 57, 289–300.Google Scholar

Blekhman, R., J. C. Marioni, P. Zumbo, M. Stephens and Y. Gilad (2010): “Sex-specific and lineage-specific alternative splicing in primates,” Genome Res., 20, 180–189.Web of ScienceCrossrefGoogle Scholar

Booth, J. G., G. Casella, H. Friedl and J. P. Hobert (2003): “Negative binomial loglinear mixed models,” Stat. Modelling, 3, 179–191.CrossrefGoogle Scholar

Chung, L. M., J. P. Ferguson, W. Zheng, F. Qian, V. Bruno, R. R. Montgomery and H. Zhao (2013): “Differential expression analysis for paired rna-seq data,” BMC Bioinformatics, 14, 110.CrossrefGoogle Scholar

Guo, Y., C.-I. Li, F. Ye and Y. Shyr (2013): “Evaluation of read count based rnaseq analysis methods,” BMC Genomics, 14, S2.Web of ScienceCrossrefGoogle Scholar

Hardcastle, T. J. and K. A. Kelly (2013): “Empirical bayesian analysis of paired high-throughput sequencing data with a beta-binomial distribution,” BMC Bioinformatics, 14, 135.CrossrefWeb of ScienceGoogle Scholar

Johnston, P. R., O. Makarova and J. Rolff (2013): “Inducible defenses stay up late: temporal patterns of immune gene expression in tenebrio molitor,” G3 (Bethesda)., 4, 947–955.Google Scholar

Kvam, V. M., P. Liu and Y. Si (2012): “A comparison of statistical methods for detecting differentially expressed genes from rna-seq data,” Am. J. Bot., 99, 248–256.CrossrefGoogle Scholar

Leng, N., J. A. Dawson, J. A. Thomson, V. Ruotti, A. I. Rissman, B. M. Smits, J. D. Haag, M. N. Gould, R. M. Stewart and C. Kendziorski (2013): “Ebseq: an empirical bayes hierarchical model for inference in rna-seq experiments,” Bioinformatics, 29, 1035–1043.Web of ScienceCrossrefGoogle Scholar

Lund, S., D. Nettleton, D. McCarthy and G. Smyth (2012): “Detecting differential expression in rna-sequence data using quasi-likelihood with shrunken dispersion estimates,” Stat. Appl. Genet. Mol. Biol., 11, 8.Google Scholar

McCarthy, D. J., Y. Chen and G. K. Smyth (2012): “Differential expression analysis of multifactor rna-seq experiments with respect to biological variation,” Nuc. Acids Res., 40, 4288–4297.Web of ScienceGoogle Scholar

Moriya, Y., M. Itoh, S. Okuda, A. C. Yoshizawa and M. Kanehisa (2007): “Kaas: an automatic genome annotation and pathway reconstruction server,” Nuc. Acids Res., 35, W182–W185.Web of ScienceGoogle Scholar

Oshlack, A., M. D. Robinson and M. D. Young (2010): “From RNA-seq reads to differential expression results,” Genome Biol., 11, 220.CrossrefWeb of ScienceGoogle Scholar

Qiu, F., F. Yu and J. Meza (2015): “Evaluation of statistical methods for differential expression analysis of rna-seq data with paired data design,” in 143rd APHA Annual Meeting and Exposition (October 31-November 4, 2015), APHA.Google Scholar

Robinson, M. D. and A. Oshlack (2010): “A scaling normalization method for differential expression analysis of RNA-seq data,” Genome Biol., 11, R25.CrossrefGoogle Scholar

Robinson, M. D. and G. K. Smyth (2007): “Moderated statistical tests for assessing differences in tag abundance,” Bioinformatics, 23, 2881–2887.Web of ScienceCrossrefGoogle Scholar

Soneson, C. and M. Delorenzi (2013): “A comparison of methods for differential expression analysis of RNA-seq data,” BMC Bioinformatics, 14, 91.CrossrefGoogle Scholar

Storey, J. D. (2002): “A direct approach to false discovery rates,” J. Roy. Stat. Soc. B, 64, 479–498.CrossrefGoogle Scholar

Stroup, W. W. (2015): “Rethinking the analysis of non-normal data in plant and soil science,” Agron. J., 107, 811–827.Google Scholar

Valdés-López, O., S. M. Khan, R. J. Schmitz, S. Cui, J. Qiu, T. Joshi, D. Xu, B. Diers, J. R. Ecker and G. Stacey (2014): “Genotypic variation of gene expression during the soybean innate immunity response,” Plant Genet. Resour., 12, S27–S30.Web of ScienceGoogle Scholar

Van De Wiel, M. A., G. G. Leday, L. Pardo, H. Rue, A. W. Van Der Vaart and W. N. Van Wieringen (2013): “Bayesian analysis of rna sequencing data by estimating multiple shrinkage priors,” Biostatistics, 14, 113–128.Web of ScienceCrossrefGoogle Scholar

Wang, Z., M. Gerstein and M. Snyder (2009): “RNA-seq: a revolutionary tool for transcriptomics,” Nat. Rev. Genet., 10, 57–63.Web of ScienceCrossrefGoogle Scholar

Wang, L., P. Li and T. P. Brutnell (2010): “Exploring plant transcriptomes using ultra high-throughput sequencing,”Brief. Funct. Genomics, 9, 118–128.Web of ScienceCrossrefGoogle Scholar

Wang, Z., X.-C. Zhang, M. H. Le, D. Xu, G. Stacey, and J. Cheng (2011): “A protein domain co-occurrence network approach for predicting protein function and inferring species phylogeny,” PloS One, 6, e17906.Google Scholar

Wang, Z., R. Cao and J. Cheng (2013): “Three-level prediction of protein function by combining profile-sequence search, profile-profile search, and domain co-occurrence networks,” BMC Bioinformatics, 14, S3.Web of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.