Altman, R. B. (2013): “Personal genomic measurements: the opportunity for information integration,” Clin. Pharmacol. Ther., 93, 21–23.Web of ScienceCrossrefGoogle Scholar

Bader, G. D. and C. W. Hogue (2003): “An automated method for finding molecular complexes in large protein interaction networks,” BMC Bioinformatics, 4, 2.CrossrefGoogle Scholar

Balasubramanian, R., T. LaFramboise, D. Scholtens, and R. Gentlman (2004): “A graph-theoretic approach to testing associations between disparate sources of functional genomics data,” Bioinformatics, 20, 3353–3362.CrossrefGoogle Scholar

Cancer Genome Atlas Network (2012): “Comprehensive molecular portraits of human breast tumours,” Nature, 490, 61–70.Google Scholar

Cho, R. J., M. J. Campbell, E. A. Winzeler, L. Steinmetz, A. Conway, L. Wodicka, T. G. Wolfsberg, A. E. Gabrielian, D. Landsman, D. J. Lockhart and R. W. Davis (1998): “A genome-wide transcriptional analysis of the mitotic cell cycle,” Mol. Cell, 2, 65–73.CrossrefGoogle Scholar

Dalakas, M. C. (2006): “Sporadic inclusion body myositis – diagnosis, pathogenesis and therapeutic strategies,” Nat. Clin. Pract. Neurol., 2, 437–447.CrossrefGoogle Scholar

Dawood, S., R. Hu, M. D. Homes, L. C. Collins, S. J. Schnitt, J. Connolly, G. A. Colditz and R. M. Tamimi (2011): “Defining breast cancer prognosis based on molecular phenotypes: results from a large cohort study,” Breast Cancer Res. Treat., 126, 185–192.Web of ScienceCrossrefGoogle Scholar

Efron, B. (1981): “Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods,” Biometrika, 68, 589–599.CrossrefGoogle Scholar

Escobar, M. and M. West (1995): “Bayesian density estimation and inference using mixtures,” J. Am. Statist. Assoc., 90, 577–588.CrossrefGoogle Scholar

Fritsch, A. and K. Ickstadt (2009): “Improved criteria for clustering based on the posterior similarity matrix,” Bayesian Anal., 4, 367–391.Web of ScienceCrossrefGoogle Scholar

Granovskaia, M. V., L. J. Jensen, M. E. Ritchie, J. Toedling, Y. Ning, P. Bork, W. Huber and L. M. Steinmetz (2010): “High-resolution transcription atlas of the mitotic cell cycle in budding yeast,” Genome Biol. 11, R24.CrossrefWeb of ScienceGoogle Scholar

Grau, J. M., and A. Selva-O’Callaghan (2008): “Sporadic inclusion body myositis,” In: Diagnostic criteria in autoimmune diseases. New York, NY: Humana Press, 165–168.Google Scholar

Harbison, C. T., D. B. Gordon, T. I. Lee, N. J. Rinaldi, K. D. Macisaac, T. W. Danford, N. M. Hannett, J.-B. Tagne, D. B. Reynolds, J. Yoo, E. G. Jennings, J. Zeitlinger, D. K. Pokholok, M. Kellis, P. A. Rolfe, K. T. Takusagawa, E. S. Lander, D. K. Gifford, E. Fraenkel and R. A. Young (2004): “Transcriptional regulatory code of a eukaryotic genome,” Nature, 431, 99–104.CrossrefGoogle Scholar

Hubert, L. and P. Arabie (1985): “Comparing partitions,” J. Classif., 2, 193–218.CrossrefGoogle Scholar

Huttenhower, C., E. M. Haley, M. A. Hibbs, V. Dumeaux, D. R. Barrett, H. A. Coller, and O. G. Troyanskaya (2009): “Exploring the human genome with functional maps,” Genome Res., 19, 1093–1106.CrossrefGoogle Scholar

Kerr, M. K. and G. A. Churchill (2001): “Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments,” Proc. Natl. Acad. Sci. USA, 98, 8961–8965.CrossrefGoogle Scholar

Kirk, P., J. E. Griffin, R. S. Savage, Z. Ghahramani and D. L. Wild (2012): “Bayesian correlated clustering to integrate multiple datasets,” Bioinformatics, 28, 3290–3297.Web of ScienceCrossrefGoogle Scholar

Lemmens, K., T. De Bie, T. Dhollander, S. C. De Keersmaecker, I. M. Thijs, G. Schoofs, A. De Weerdt, B. De Moor, J. Vanderleyden, J. Collado-Vides, K. Engelen and K Marchal (2009): “Distiller: a data integration framework to reveal condition dependency of complex regulons in escherichia coli,” Genome Biol., 10, R27.Web of ScienceCrossrefGoogle Scholar

Lock, E. F. and D. B. Dunson (2013): “Bayesian consensus clustering,” Bioinformatics, 29:2610–2616.CrossrefWeb of ScienceGoogle Scholar

Machado, P., A. Miller, J. Holton and M. Hanna (2009): “Sporadic inclusion body myositis: an unsolved mystery,” Acta Reumatol. Port., 34, 161–182.Google Scholar

Monti, S., P. Tamayo, J. Mesirov, and T. Golub (2003): “Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data,” Machine Learn., 52, 91–118.Google Scholar

Myers, C. L., D. Robson, A. Wible, M. A. Hibbs, C. Chiriac, C. L. Theesfeld, K. Dolinski and O. G. Troyanskaya (2005): “Discovery of biological networks from diverse functional genomic data,” Genome Biol., 6, R114.CrossrefGoogle Scholar

Myers, C. L. and O. G. Troyanskaya (2007): “Context-sensitive data integration and prediction of biological networks,” Bioinformatics, 23, 2322–2330.Web of ScienceCrossrefGoogle Scholar

Narayanan, M., A. Vetta, E. E. Schadt and J. Zhu (2010): “Simultaneous clustering of multiple gene expression and physical interaction datasets,” PLoS Comput Biol., 6, e1000742.CrossrefWeb of ScienceGoogle Scholar

Neal, R. M. (2000): “Markov chain sampling methods for dirichlet process mixture models,” J. Comput. Graph. Stat., 9, 249–256.Google Scholar

Needham, M. and F. L. Mastaglia (2007): “Inclusion body myositis: current pathogenetic concepts and diagnostic and therapeutic approaches,” Lancet Neurol., 6, 620–631.CrossrefWeb of ScienceGoogle Scholar

Nepusz, T., H. Yu and A. Paccanaro (2012): “Detecting overlapping protein complexes in protein-protein interaction networks,” Nat. Methods, 9, 471–472.CrossrefWeb of ScienceGoogle Scholar

Rakha, E. A., J. S. Reis-Filho and I. O. Ellis (2008): “Basal-like breast cancer: a critical review,” J. Clin. Oncol., 26, 2568–2581.CrossrefGoogle Scholar

Rasmussen, C. and C. Williams (2006): Gaussian processes for machine learning, 55 Hayward Street, Cambridge, MA 02142: The MIT Press, first edition.Google Scholar

Reiss, D. J., N. S. Baliga and R. Bonneau (2006): “Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks,” BMC Bioinformatics, 7, 280.CrossrefGoogle Scholar

Savage, R. S., Z. Ghahramani, J. E. Griffin, P. Kirk and D. L. Wild (2013): “Identifying cancer subtypes in glioblastoma by combining genomic, transcriptomic and epigenomic data,” arXiv preprint arXiv:1304.3577.Google Scholar

Schimek, M. G., E. Budinská, K. G. Kugler, V. Švendová, J. Ding and S. Lin (2015): “TopKLists: a comprehensive R package for statistical inference, stochastic aggregation, and visualization of multiple omics ranked lists,” Stat. Appl. Genet. Mol. Biol., 14, 311–316.Web of ScienceGoogle Scholar

Shen, R., A. B. Olshen and M. Ladanyi (2009): “Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis,” Bioinformatics, 25, 2906–2912.Web of ScienceCrossrefGoogle Scholar

Stark, C., B.-J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz and M. Tyers (2006): “BioGRID: a general repository for interaction datasets,” Nucleic Acids Res., 34(suppl 1), D535–D539.CrossrefGoogle Scholar

Thorne, T., P. Fratta, M. G. Hanna, A. Cortese, V. Plagnol, E. M. Fisher and M. P. H. Stumpf (2013): “Graphical modelling of molecular networks underlying sporadic inclusion body myositis,” Mol. BioSyst., 9, 1736–1742.Web of ScienceCrossrefGoogle Scholar

Troyanskaya, O. G., K. Dolinski, A. B. Owen, R. B. Altman and D. Botstein (2003): “A bayesian framework for combining heterogeneous data sources for gene function prediction (in saccharomyces cerevisiae),” Proc. Natl. Acad. Sci. USA, 100, 8348–8353.CrossrefGoogle Scholar

Wang, B., A. M. Mezlini, F. Demir, M. Fiume, Z. Tu, M. Brudno, B. Haibe-Kains and A. Goldenberg (2014): “Similarity network fusion for aggregating data types on a genomic scale,” Nat. Methods, 11, 333–337.CrossrefWeb of ScienceGoogle Scholar

Wu, M., X. Li, C.-K. Kwoh and S.-K. Ng (2009): “A core-attachment based method to detect protein complexes in ppi networks,” BMC Bioinformatics, 10, 169.CrossrefGoogle Scholar

Yuan, Y., R. S. Savage and F. Markowetz (2011): “Patient-specific data fusion defines prognostic cancer subtypes,” PLoS Comput. Biol., 7, e1002227.CrossrefWeb of ScienceGoogle Scholar

Zhang, X.-x., Q.-h. Xiao, B. Li, S. Hu, H.-j. Xiong and B.-h. Zhao (2015): “Overlap maximum matching ratio (ommr): a new measure to evaluate overlaps of essential modules,” Frontiers of Information Technology & Electronic Engineering, 16, 293–300.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.