Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Sanguinetti, Guido

6 Issues per year

IMPACT FACTOR 2017: 0.812
5-year IMPACT FACTOR: 1.104

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.456
Source Normalized Impact per Paper (SNIP) 2017: 0.527

Mathematical Citation Quotient (MCQ) 2017: 0.04

See all formats and pricing
More options …
Volume 15, Issue 3


Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Model selection for factorial Gaussian graphical models with an application to dynamic regulatory networks

Veronica Vinciotti / Luigi Augugliaro / Antonino Abbruzzo / Ernst C. Wit
Published Online: 2016-03-26 | DOI: https://doi.org/10.1515/sagmb-2014-0075


Factorial Gaussian graphical Models (fGGMs) have recently been proposed for inferring dynamic gene regulatory networks from genomic high-throughput data. In the search for true regulatory relationships amongst the vast space of possible networks, these models allow the imposition of certain restrictions on the dynamic nature of these relationships, such as Markov dependencies of low order – some entries of the precision matrix are a priori zeros – or equal dependency strengths across time lags – some entries of the precision matrix are assumed to be equal. The precision matrix is then estimated by l1-penalized maximum likelihood, imposing a further constraint on the absolute value of its entries, which results in sparse networks. Selecting the optimal sparsity level is a major challenge for this type of approaches. In this paper, we evaluate the performance of a number of model selection criteria for fGGMs by means of two simulated regulatory networks from realistic biological processes. The analysis reveals a good performance of fGGMs in comparison with other methods for inferring dynamic networks and of the KLCV criterion in particular for model selection. Finally, we present an application on a high-resolution time-course microarray data from the Neisseria meningitidis bacterium, a causative agent of life-threatening infections such as meningitis. The methodology described in this paper is implemented in the R package sglasso, freely available at CRAN, http://CRAN.R-project.org/package=sglasso.

This article offers supplementary material which is provided at the end of the article.

Keywords: gene-regulatory systems; graphical models; penalized inference; sparse networks


  • Abegaz, F. and E. Wit (2013): “Sparse time series chain graphical models for reconstructing genetic networks,” Biostatistics, 14, 586–599.Web of ScienceGoogle Scholar

  • Aderhold, A., D. Husmeier and M. Grzegorczyk (2014): “Statistical inference of regulatory networks for circadian regulation,” Stat. Appl. Genet. Mol. Biol., 13, 227–273.Google Scholar

  • Akaike, H. (1973): Information theory and an extension of the maximum likelihood principle. In: B. N. Petrov and F. Czaki, eds., Second International Symposium on Information Theory, Akademiai Kiado, Budapest, 267–281.Google Scholar

  • Augugliaro, L., A. M. Mineo and E. C. Wit (2013): “Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models,” J. Roy. Statist. Soc. Ser. B, 75, 471–498.Google Scholar

  • Banerjee, O., L. El Ghaoui and A. d’Aspremont (2008): “Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data,” J. Mach. Learn. Res., 9, 485–516.Google Scholar

  • Bickel, P. J. and E. Levina (2008): “Regularized estimation of large covariance matrices,” Ann. Statist., 36, 199–227.Google Scholar

  • Bühlmann, P. and S. Van De Geer (2011): Statistics for high-dimensional data: methods, theory and applications, Berlin, Heidelberg: Springer.Google Scholar

  • Efron, B. (1986): “How biased is the apparent error rate of a prediction rule?” J. Amer. Statist. Assoc., 81, 461–470.Google Scholar

  • Efron, B. (2004): “The estimation of prediction error: covariance penalties and cross-validation,” J. Amer. Statist. Assoc., 99, 619–632.Google Scholar

  • Efron, B., T. Hastie, I. Johnstone and R. Tibshirani (2004): “Least angle regression,” Ann. Statist., 32, 407–499.Google Scholar

  • Fagnocchi, L., E. Pigozzi, V. Scarlato and I. Delany (2012): “In the NadR regulon, adhesins and diverse meningococcal functions are regulated in response to signals in human saliva,” J. Bacteriol., 194, 460–474.Web of ScienceGoogle Scholar

  • Foygel, R. and M. Drton (2010): “Extended Bayesian information criteria for gaussian graphical models,” in: Advances in Neural Information Processing Systems, pp. 604–612.Google Scholar

  • Friedman, J., T. Hastie, H. Höfling and R. Tibshirani (2007): “Pathwise coordinate optimization,” Ann. Appl. Stat., 1, 302–332.Google Scholar

  • Friedman, J., T. Hastie and R. Tibshirani (2008): “Sparse inverse covariance estimation with the graphical lasso,” Biostatistics, 9, 432–441.Web of ScienceGoogle Scholar

  • Friedman, J. H., T. Hastie and R. Tibshirani (2010): “Regularization paths for generalized linear models via coordinate descent,” J. Stat. Softw., 33, 1–22.Google Scholar

  • Gao, X., D. Q. Pu, Y. Wu and X. Xu (2012): “Tuning parameter selection for penalized likelihood estimation of Gaussian graphical model,” Statistica Sinica, 22, 1123–1146.Web of ScienceGoogle Scholar

  • Genco, C. A. and L. M. Wetzler (2010): Neisseria: molecular mechanisms of pathogenesis, Norfolk, UK: Caister Academic Press.Google Scholar

  • Giuliani, M. M., J. Adu-Bobie, M. Comanducci, B. Aricò, S. Savino, L. Santini, B. Brunelli, S. Bambini, A. Biolchi, B. Capecchi, E. Cartocci, L. Ciucchi, F. Di Marcello, F. Ferlicca, B. Galli, E. Luzzi, V. Masignani, D. Serruto, D. Veggi, M. Contorni, M. Morandi, A. Bartalesi, V. Cinotti, D. Mannucci, F. Titta, E. Ovidi, J. A. Welsch, D. Granoff, R. Rappuoli and M. Pizza (2006): “A universal vaccine for serogroup B meningococcus,” Proc. Natl. Acad. Sci. USA, 103, 10834–10839.Google Scholar

  • Grzegorczyk, M. and D. Husmeier (2011): “Non-homogeneous dynamic Bayesian networks for continuous data,” Mach. Learn., 83, 355–419.Web of ScienceGoogle Scholar

  • Guo, J., E. Levina, G. Michailidis and J. Zhu (2011): “Joint estimation of multiple graphical models,” Biometrika, 98, 1–15.Web of ScienceGoogle Scholar

  • Højsgaard, S. and S. Lauritzen (2008): “Graphical Gaussian models with edge and vertex symmetries,” J. R. Stat. Soc. Series B Stat Methodol., 70, 1005–1027.Google Scholar

  • Hoops, S., S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes and U. Kummer (2006): “Copasia complex pathway simulator,” Bioinformatics, 22, 3067–3074.Google Scholar

  • Huang, C. Y. and J. E. Ferrell (1996): “Ultrasensitivity in the mitogen-activated protein kinase cascade,” Proc. Natl. Acad. Sci. USA, 93, 10078–10083.Google Scholar

  • Jordan, P. and N. Saunders (2009): “Host iron binding proteins acting as niche indicators for Neisseria meningitidis,” PLoS One, 4, e5198.Web of ScienceGoogle Scholar

  • Leloup, J.-C. and A. Goldbeter (1999): “Chaos and birhythmicity in a model for circadian oscillations of the {PER} and {TIM} proteins in drosophila,” J. Theor. Biol., 198, 445–459.Google Scholar

  • Liu, H., K. Roeder and L. Wasserman (2010): “Stability approach to regularization selection (stARS) for high dimensional graphical models,” In: J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel and A. Culotta, eds., Advances in Neural Information Processing Systems 23, Red Hook, NY: Curran Associates, Inc., pp. 1432–1440.Google Scholar

  • Lysen, S. (2009): Permuted inclusion criterion: a variable selection technique, PhD thesis, University of Pennsylvania.Google Scholar

  • Meinshausen, N. and P. Bühlmann (2006): “High-dimensional graphs and variable selection with the lasso,” Ann. Statist., 34, 1436–1462.Google Scholar

  • Miller, K. S. (1981): “On the inverse of the sum of matrices,” Mathematics Magazine, 54, 67–72.Google Scholar

  • Pizza, M. and R. Rappuoli (2015): “Neisseria meningitidis: pathogenesis and immunity,” Curr. Opin. Microbiol., 23, 68–72.Google Scholar

  • Rhein, R. O. and K. Strimmer (2007): “From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data,” BMC Syst. Biol., 1, 37.Web of ScienceGoogle Scholar

  • Rothman, A., P. J. Bickel, E. Levina and J. Zhu (2008): “Sparse permutation invariant covariance estimation,” Electron. J. Stat., 2, 494–515.Google Scholar

  • Ryan, K. J., and L. G. Ray (2010): “Influenza, parainfluenza, respiratory syncytial virus, adenovirus and other respiratory viruses, Chap 9,” In: Sherris Medical Microbiology, 5th edn. New York: McGraw Hill, pp. 167–187.Google Scholar

  • Saunders, N. and J. Davies (2012): “The use of the pan-Neisseria microarray and experimental design for transcriptomics studies of neisseria,” Methods Mol Biol., 799, 295–317.Web of ScienceGoogle Scholar

  • Schielke, S., C. Huebner, C. Spatz, V. Nägele, N. Ackermann, M. Frosch, O. Kurzai and A. Schubert-Unkmeir (2009): “Expression of the meningococcal adhesin NadA is controlled by a transcriptional regulator of the MarR family,” Mol. Microbiol., 72, 1054–1067.Web of ScienceGoogle Scholar

  • Schoen, C., L. Kischkies, J. Elias and B. J. Ampattuu (2014): “Metabolism and virulence in Neisseria meningitidis,” Front. Cell. Infect. Microbiol., 4, 114.Google Scholar

  • Schwarz, G. (1978): “Estimating the dimension of a model,” Ann. Statist., 6, 461–464.Google Scholar

  • Signorelli, M., V. Vinciotti and E. C. Wit (2015): pnea: Parametric Network Enrichment Analysis, URL http://CRAN.R-project.org/package=pnea, r package version 1.2.0.

  • Tettelin, H., N. J. Saunders, J. Heidelberg, A. C. Jeffries, K. E. Nelson, J. A. Eisen, K. A. Ketchum, D. W. Hood, J. F. Peden, R. J. Dodson, W. C. Nelson, M. L. Gwinn, R. DeBoy, J. D. Peterson, E. K. Hickey, D. H. Haft, S. L. Salzberg, O. White, R. D. Fleischmann, B. A. Dougherty, T. Mason, A. Ciecko, D. S. Parksey, E. Blair, H. Cittone, E. B. Clark, M. D. Cotton, T. R. Utterback, H. Khouri, H. Qin, J. Vamathevan, J. Gill, V. Scarlato, V. Masignani, M. Pizza, G. Grandi, L. Sun, H. O. Smith, C. M. Fraser, E. R. Moxon, R. Rappuoli and J. Craig Venter (2000): “Complete genome sequence of neisseria meningitidis serogroup B strain MC58,” Science, 287, 1809–1815.Google Scholar

  • Vujačić, I., A. Abbruzzo and E. Wit (2015): “A computationally fast alternative to cross-validation in penalized Gaussian graphical models,” J. Stat. Comput. Simul., 85, 3628–3640.Web of ScienceGoogle Scholar

  • Wang, C., D. Sun and K. Toh (2010): “Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm,” SIAM J. Optim., 20, 2994.Web of ScienceGoogle Scholar

  • Wit, E. and A. Abbruzzo (2015): “Factorial graphical models for dynamic networks,” Net. Sci., 3, 37–57.Web of ScienceGoogle Scholar

  • Wit, E., E. v. d. Heuvel and J.-W. Romeijn (2012): “All models are wrong...: an introduction to model uncertainty,” Statistica Neerlandica, 66, 217–236.Web of ScienceGoogle Scholar

  • Wu, T. T. and K. Lange (2008): “Coordinate descent algorithms for lasso penalized regression,” Ann. Appl. Statist., 2, 224–244.Google Scholar

  • Zou, H., T. Hastie and R. Tibshirani (2007): “On the “degrees of freedom” of the lasso,” Ann. Statist., 35, 2173–2192.Google Scholar

About the article

Corresponding author: Ernst C. Wit, Johann Bernoulli Institute, University of Groningen, 9747 AG Groningen, The Netherlands, e-mail:

Published Online: 2016-03-26

Published in Print: 2016-06-01

Citation Information: Statistical Applications in Genetics and Molecular Biology, Volume 15, Issue 3, Pages 193–212, ISSN (Online) 1544-6115, ISSN (Print) 2194-6302, DOI: https://doi.org/10.1515/sagmb-2014-0075.

Export Citation

©2016 by De Gruyter.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Luigi Augugliaro, Antonino Abbruzzo, and Veronica Vinciotti
Biostatistics, 2018
Thalia E. Chan, Michael P.H. Stumpf, and Ann C. Babtie
Cell Systems, 2017, Volume 5, Number 3, Page 251
Francesco Moscone, Elisa Tosetti, and Veronica Vinciotti
The Econometrics Journal, 2017

Comments (0)

Please log in or register to comment.
Log in