Jump to ContentJump to Main Navigation
Show Summary Details

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Stumpf, Michael P.H.

6 Issues per year

IMPACT FACTOR increased in 2015: 1.265
5-year IMPACT FACTOR: 1.423
Rank 42 out of 123 in category Statistics & Probability in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.954
Source Normalized Impact per Paper (SNIP) 2015: 0.554
Impact per Publication (IPP) 2015: 1.061

Mathematical Citation Quotient (MCQ) 2015: 0.06

See all formats and pricing
Volume 15, Issue 5 (Oct 2016)

A simulation framework for correlated count data of features subsets in high-throughput sequencing or proteomics experiments

Jochen Kruppa
  • Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Hannover, D-30559, Germany
/ Frank Kramer
  • Department of Medical Statistics, University Medical Center Göttingen, 37099 Göttingen, Germany
/ Tim Beißbarth
  • Department of Medical Statistics, University Medical Center Göttingen, 37099 Göttingen, Germany
/ Klaus Jung
  • Corresponding author
  • Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Hannover, D-30559, Germany
  • Email:
Published Online: 2016-09-21 | DOI: https://doi.org/10.1515/sagmb-2015-0082


As part of the data processing of high-throughput-sequencing experiments count data are produced representing the amount of reads that map to specific genomic regions. Count data also arise in mass spectrometric experiments for the detection of protein-protein interactions. For evaluating new computational methods for the analysis of sequencing count data or spectral count data from proteomics experiments artificial count data is thus required. Although, some methods for the generation of artificial sequencing count data have been proposed, all of them simulate single sequencing runs, omitting thus the correlation structure between the individual genomic features, or they are limited to specific structures. We propose to draw correlated data from the multivariate normal distribution and round these continuous data in order to obtain discrete counts. In our approach, the required distribution parameters can either be constructed in different ways or estimated from real count data. Because rounding affects the correlation structure we evaluate the use of shrinkage estimators that have already been used in the context of artificial expression data from DNA microarrays. Our approach turned out to be useful for the simulation of counts for defined subsets of features such as individual pathways or GO categories.

Keywords: count data; gene ontology; next-generation sequencing; pathways; simulation


  • Adler, A. S., M. L. McCleland, S. Yee, M. Yaylaoglu, S. Hussain, E. Cosino, E. Quinones, Z. Modrusan, S. Seshagiri, E. Torres, V. S. Chopra, B. Haley, Z. Zhang, E. M. Blackwood, M. Singh, M. Junttila, J-P. Stephan, J. Liu, G. Pau, E. R. Fearon, Z. Jiang and R. Firestein (2014): “An integrative analysis of colon cancer identifies an essential function for PRPF6 in tumor growth,” Genes. Dev., 28, 1068–1084.

  • Allen, G. I. and Z. Liu (2012): “A log-linear graphical model for inferring genetic networks from high-throughput sequencing data,” IEEE Int. Conf. Bioinf. Biomed., 41–46. doi: [Crossref].

  • Allen, G. I. and Z. Liu (2013): “A local poisson graphical model for inferring genetic networks from next generation sequencing data,” IEEE Trans. Nanobiosci., 12, 1–10.

  • Anders, S. and W. Huber (2010): “Differential expression analysis for sequence count data,” Genome Biol., 11, R106. [Crossref]

  • Anders, S., P. T. Pyl and W. Huber (2015): “HTSeq – A Python framework to work with high-throughput sequencing data,” Bioinformatics, 31, 166–169.

  • Böhning, D., E. Dietz and P. Schlattmann (1999): “The zero-inflated poisson model and the decayed, missing and filled teeth index in dental epidemiology,” J. Royal. Stat. Soc., Series A, 162, 195–209.

  • Canale, A. and D. B. Dunson (2012): “Nonparametric Bayes modelling of count processes,” Biometrika, 100, 801–816.

  • Choi, H., D. Fermin and A. I. Nesvizhskii (2008): “Significance analysis of spectral count data in label-free shotgun proteomics,” Mol. Cell. Proteomics, 7, 2373–2385.

  • Demir, E., M. P. Cary, S. Paley, K. Fukuda, C. Lemer, I. Vastrik, G. Wu, P. D’Eustachio, C. Schaefer, J. Luciano, F. Schacherer, I. Martinez-Flores, Z. Hu, V. Jimenez-Jacinto, G. Joshi-Tope, K. Kandasamy, A. C. Lopez-Fuentes, H. Mi, E. Pichler, I. Rodchenkov, A. Splendiani, S. Tkachev, J. Zucker, G. Gopinath, H. Rajasimha, R. Ramakrishnan, I. Shah, M. Syed, N. Anwar, O. Babur, M. Blinov, E. Brauner, D. Corwin, S. Donaldson, F. Gibbons, R. Goldberg, P. Hornbeck, A. Luna, P. Murray-Rust, E. Neumann, O. Ruebenacker, M. Samwald, M. van Iersel, S. Wimalaratne, K. Allen, B. Braun, M. Whirl-Carrillo, K. H. Cheung, K. Dahlquist, A. Finney, M. Gillespie, E. Glass, L. Gong, R. Haw, M. Honig, O. Hubaut, D. Kane, S. Krupa, M. Kutmon, J. Leonard, D. Marks, D. Merberg, V. Petri, A. Pico, D. Ravenscroft, L. Ren, N. Shah, M. Sunshine, R. Tang, R. Whaley, S. Letovksy, K. H. Buetow, A. Rzhetsky, V. Schachter, B. S. Sobral, U. Dogrusoz, S. McWeeney, M. Aladjem, E. Birney, J. Collado-Vides, S. Goto, M. Hucka, N. Le Novère, N. Maltsev, A. Pandey, P. Thomas, E. Wingender, P. D. Karp, C. Sander and G. D. Bader (2010): “The BioPAX community standard for pathway data sharing,” Nat. Biotechnol., 28, 935–942.

  • Fischer, M., S. Zilkenat, R. G. Gerlach, S. Wagner and B. Y. Renard (2014): “Pre- and post-processing workflow for affinity purification mass spectrometry data,” J. Proteom. Res., 13, 2239–2249.

  • Frazee, A. C., G. Pertea, A. E. Jaffe, B. Langmead, S. L. Salzberg and J. T. Leek (2014): “Flexible isoform-level differential expression analysis with Ballgown,” bioRxiv reprint, doi: [Crossref].

  • Fröhlich, H., Ö. Sahin, D. Arlt, C. Bender and T. Beissbarth (2009): “Deterministic Effects Propagation Networks for reconstructing protein signaling networks from multiple interventions,” BMC Bioinform., 10, 322.

  • Galati, J. C., K. A. Seaton, K. J. Lee, J. A. Simpson and J. B. Carlin (2014): “Rounding non-binary categorical variables following multivariate normal imputation: evaluation of simple methods and implications for practice,” J. Stat. Comput. Simul., 84, 798–811.

  • Goeman, J. J., S.A. van de Geer, F. de Kort and H. C. van Houwelingen (2004): “A global test for groups of genes: testing association with a clinical outcome,” Bioinformatics, 20, 93–99.

  • Griebel, T., B. Zacher, P. Ribeca, E. Raineri, V. Lacroix, R. Guigó and M. Sammeth (2012): “Modelling and simulating generic RNA-Seq experiments with the flux simulator,” Nucleic Acids Res., 40, 10073–10083.

  • Higham, N. (2002): “Computing the nearest correlation matrix – a problem from finance,” IMA J. Numer. Anal., 22, 329–343.

  • Horton, N. J., S. R. Lipsitz and M. Parzen (2003): “A potential for bias when rounding in multiple imputation,” Am. Stat., 57, 229–232.

  • Jung, K., H. Dihazi, A. Bibi, G. H. Dihazi and T. Beissbarth (2014): “Adaption of the global test idea to proteomics data with missing values,” Bioinformatics, 30, 1424–1430.

  • Karlis, D. and L. Meligkotsidou (2005): “Multivariate Poisson regression with covariance structure,” Stat. Comput., 15, 255–265.

  • Kirk, P. D. W. and M. P. H. Stumpf (2009): “Gaussian process regression bootstrapping: exploring the effects of uncertainty in time course data,” Bioinformatics, 25, 1300–1306.

  • Kramer, F. (2014): “Integration of Pathway Data as Prior Knowledge into Methods for Network Reconstruction,” Dissertation, Georg-August-Universit at Göttingen.

  • Kramer, F., M. Bayerlová, F. Klemm, A. Bleckmann and T. Beissbarth (2013): “rBiopaxParser – an R package to parse, modify and visualize BioPAX data,” Bioinformatics, 29, 520–522.

  • Kramer, F., M. Bayerlová and T. Beißbarth (2014): “R-based software for the integration of pathway data into bioinformatic algorithms,” Biology, 3, 85–100.

  • Ledoit, O. and M. Wolf (2003): “Improved estimation of the covariance matrix of stock returns with an application to portfolio selection,” J. Empir. Financ., 10, 603–621.

  • Leisch, F., A. Weingessel and K. Hornik (1998): “On the generation of correlated artificial binary data.” Working Papers SFB ‘Adaptive Information Systems and Modelling in Economics and Management Science’, 13. SFB Adaptive Information Systems and Modelling in Economics and Management Science, WU Vienna University of Economics and Business, Vienna.

  • Li, B. and C. Dewey (2011): “RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome,” BMC Bioinform., 12, 323.

  • Li, C.-S., J.-C. Lu, J. Park, K. Kim, P. A. Brinkley and J. P. Peterson (1999): “Multivariate zero-inflated poisson models and their applications,” Technometrics, 41, 29–38.

  • Liao, Y., G. K. Smyth and W. Shi (2014): “FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features,” Bioinformatics, 30, 923–930.

  • Liu, Z., F. Sun, J. Braun, D. P. B. McGovern and S. Piantadosi (2015): “Multilevel regularized regression for simultaneous taxa selection and network construction with metagenomic count data,” Bioinformatics, 31, 1067–1074.

  • Mansmann, U. and R. Meister (2006): “Testing differential gene expression in functional groups,” Methods Inf. Med., 44, 449–453.

  • Opgen-Rhein, R. and K. Strimmer (2007): “Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach,” Statist. Appl. Genet. Mol. Biol., 6, 9.

  • R Core Team (2013): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

  • Robinson, M. D., D. J. McCarthy and G. K. Smyth (2010): “edgeR: a Bioconductor package for differential expression analysis of digital gene expression data,” Bioinformatics, 26, 139–140.

  • Rustici G., N. Kolesnikov, M. Brandizi, T. Burdett, M. Dylag, I. Emam, A. Farne, E. Hastings, J. Ison, M. Keays, N. Kurbatova, J. Malone, R. Mani, A. Mupo, R. Pedro Pereira, E. Pilicheva, J. Rung, A. Sharma, Y. A. Tang, T. Ternent, A. Tikhonov, D. Welter, E. Williams, A. Brazma, H. Parkinson and U. Sarkans (2013): “ArrayExpress update – trends in database growth and links to data analysis tools,” Nucleic Acids. Res., 31, D987–D990. [Crossref]

  • Schaefer, C. F., K. Anthony, S. Krupa, J. Buchoff, M. Day, T. Hannay and K. H. Buetow (2009): “PID: the pathway interaction database,” Nucleic Acids. Res., 37, D674–D679. [Crossref]

  • Schäfer, J. and K. Strimmer (2005): “A shrinkage approach to large-scale covariance estimation and implications for functional genomics,” Statist. Appl. Genet. Mol. Biol., 4, 32.

  • Shi, P. and E. A. Valdez (2014): “Multivariate negative binomial models for insurance claim counts,” Insur. Math. Econ., 55, 18–29.

  • Shin, K. and R. Pasupathy (2007): “A method for fast generation of bivariate Poisson random vectors,” Proc 2007 Winter Simulation Conf, 472–479.

  • Yahav, I. and G. Shmueli (2012): “On generating multivariate Poisson data in management science applications,” Appl. Stoch. Model. Bus., 28, 91–102.

  • Zhang, L. and B. K. Mallick (2013): “Inferring gene networks from discrete expression data,” Biostatistics, 14, 708–722.

  • Zhao, T. and H. Liu (2012): “The huge Package for High-Dimensional Undirected Graph Estimation in R,” J. Mach. Learn. Res., 13, 1059–1062.

  • Zhou, H., J. Jin, Z. Haojun, Y. Bo, M. Wozniak and W. Limsoon (2012): “IntPath – an integrated pathway gene relationship database for model organisms and important pathogens,” BMC Syst. Biol., 6:Suppl 2, S2. [Crossref]

About the article

Published Online: 2016-09-21

Published in Print: 2016-10-01

Citation Information: Statistical Applications in Genetics and Molecular Biology, ISSN (Online) 1544-6115, ISSN (Print) 2194-6302, DOI: https://doi.org/10.1515/sagmb-2015-0082. Export Citation

Comments (0)

Please log in or register to comment.
Log in