Bach, F. (2014): “Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression,” J. Mach. Learn. Res., 15, 595–627. Google Scholar

Beaumont, M. A. (2010): “Approximate Bayesian computation in evolution and ecology,” Annu. Rev. Ecol. Evol. S., 41, 379–406. CrossrefGoogle Scholar

Beaumont, M. A., W. Zhang and D. J. Balding (2002): “Approximate Bayesian computation in population genetics,” Genetics, 162, 2025–2035. PubMedGoogle Scholar

Beaumont, M. A., J.-M. Cornuet, J.-M. Marin and C. P. Robert (2009): “Adaptive approximate Bayesian computation,” Biometrika, 96, 983–990. CrossrefWeb of ScienceGoogle Scholar

Bertl, J. (2014): “An approximate maximum likelihood algorithm with case studies,” PhD thesis, University of Vienna. Google Scholar

Blum, J .R. (1954): “Multidimensional stochastic approximation methods,” Ann. Math. Stat., 25, 737–744. CrossrefGoogle Scholar

Blum, M. G. B., M. A. Nunes, D. Prangle and S. A. Sisson (2013): “A comparative review of dimension reduction methods in approximate Bayesian computation,” Stat. Sci., 28, 189–208. Web of ScienceCrossrefGoogle Scholar

Creel, M. and D. Kristensen (2013): “Indirect Likelihood Inference (revised),” UFAE and IAE Working Papers 931.13. URL http://ideas.repec.org/p/aub/autbar/931.13.html.

Davison, A. C. and D. V. Hinkley (1997): Bootstrap methods and their applications, Cambridge University Press, Cambridge. Google Scholar

De Maio, N., C. Schlötterer and C. Kosiol (2013): “Linking great apes genome evolution across time scales using polymorphism-aware phylogenetic models,” Mol. Biol. Evol., 30, 2249–2262. CrossrefPubMedWeb of ScienceGoogle Scholar

De Valpine, P. (2004): “Monte Carlo state-space likelihoods by weighted posterior kernel density estimation,” J. Am. Stat. Assoc., 99, 523–536. CrossrefGoogle Scholar

Dieuleveut, A. and F. Bach (2016): “Non-parametric stochastic approximation with large step sizes,” Ann. Stat., 44, 1363–1399. CrossrefGoogle Scholar

Diggle P. J. and R. J. Gratton (1984): “Monte Carlo methods of inference for implicit statistical models,” J. R. Stat. Soc. B, 46, 193–227. Google Scholar

Drovandi, C. C., A. N. Pettitt and M. J. Faddy (2011): “Approximate Bayesian computation using indirect inference,” J. R. Stat. Soc. C, 60, 317–337. CrossrefGoogle Scholar

Ehrlich, E., A. Jasra and N. Kantas (2013): “Gradient free parameter estimation for hidden Markov models with intractable likelihoods,” Methodol. Comput. Appl. Probab., 17, 1–35. Web of ScienceGoogle Scholar

Ewing, G. and J. Hermisson (2010): “MSMS: a coalescent simulation program including recombination, demographic structure and selection at a single locus,” Bioinformatics, 26, 2064–2065. Web of ScienceCrossrefGoogle Scholar

Fearnhead, P. and D. Prangle (2012): “Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation,” J. R. Stat. Soc. B, 74, 419–474. Web of ScienceCrossrefGoogle Scholar

Fermanian, J.-D. and B. Salanié (2004): “A nonparametric simulated maximum likelihood estimation method,” Economet. Theor., 20, 701–734. Google Scholar

Forneron , J.-J. and S. Ng (2015): “The ABC of simulation estimation with auxiliary statistics,” Technical report, arXiv. Google Scholar

Gouriéroux, C., A. Monfort and E. Renault (1993): “Indirect inference,” J. Appl. Econometr., 8, 85–118. CrossrefGoogle Scholar

Gutenkunst, R. N., R. D. Hernandez, S. H. Williamson and C. D. Bustamante (2009): “Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data,” PLoS Genet., 5, 1–11. Web of ScienceGoogle Scholar

Gutmann, M. U. and J. Corander (2016): “Bayesian optimization for likelihood-free inference of simulator-based statistical models,” J. Mach. Learn. Res., 17, 1–47. Google Scholar

Härdle, W., M. Müller, S. Sperlich and A. Werwatz (2004): Nonparametric and semiparametric models, Springer Series in Statistics. Springer, New York. Google Scholar

Heggland , K. and A. Frigessi (2004): “Estimating functions in indirect inference,” J. R. Stat. Soc. B, 66, 447–462. CrossrefGoogle Scholar

Kiefer , J. and J. Wolfowitz (1952): “Stochastic estimation of the maximum of a regression function,” Ann. Math. Stat., 23, 462–466. CrossrefGoogle Scholar

Locke, D. P., L. W. Hillier, W. C. Warren, K. C. Worley, L. V. Nazareth, D. M. Muzny, S.-P. Yang, Z. Wang, A. T. Chinwalla, P. Minx, M. Mitreva, L. Cook, K. D. Delehaunty, C. Fronick, H. Schmidt, L. A. Fulton, R. S. Fulton, J. O. Nelson, V. Magrini, C. Pohl, T. A. Graves, C. Markovic, A. Cree, H. H. Dinh, J. Hume, C. L. Kovar, G. R. Fowler, G. Lunter, S. Meader, A. Heger, C. P. Ponting, T. Marques-Bonet, C. Alkan, L. Chen, Z. Cheng, J. M. Kidd, E. E. Eichler, S. White, S. Searle, A. J. Vilella, Y. Chen, P. Flicek, J. Ma, B. Raney, B. Suh, R. Burhans, J. Herrero, D. Haussler, R. Faria, O. Fernando, F. Darré, D. Farré, E. Gazave, M. Oliva, A. Navarro, R. Roberto, O. Capozzi, N. Archidiacono, G. Della Valle, S. Purgato, M. Rocchi, M. K. Konkel, J. A. Walker, B. Ullmer, M. A. Batzer, A. F. Smit, R. Hubley, C. Casola, D. R. Schrider, M. W. Hahn, V. Quesada, X. S. Puente, G. R. Ordoñez, C. López-Otín, T. Vinar, B. Brejova, A. Ratan, R. S. Harris, W. Miller, C. Kosiol, H. A. Lawson, V. Taliwal, A. L. Martins, A. Siepel, A. Roychoudhury, X. Ma, J. Degenhardt, C. D. Bustamante, R. N. Gutenkunst, T. Mailund, J. Y. Dutheil, A. Hobolth, M. H. Schierup, O. A. Ryder, Y. Yoshinaga, P. J. de Jong, G. M. Weinstock, J. Rogers, E. R. Mardis, R. A. Gibbs and R. K. Wilson (2011): “Comparative and demographic analysis of orang-utan genomes,” Nature, 469, 529–533. Web of SciencePubMedCrossrefGoogle Scholar

Ma, X., J. L. Kelly, K. Eilertson, S. Musharoff, J. D. Degenhardt, A. L. Martins, T. Vinar, C. Kosiol, A. Siepel, R. N. Gutenkunst and C. D. Bustamante (2013): “Population genomic analysis reveals a rich speciation and demographic history of orang-utans (*Pongo pygmaeus* and *Pongo abelii*),” PLoS One, 8, 1–11. Web of ScienceGoogle Scholar

Marjoram, P. and S. Tavaré (2006): “Modern computational approaches for analysing molecular genetic variation data,” Nat. Rev. Genet., 7, 759–770. CrossrefPubMedGoogle Scholar

McKinley, T., A. R. Cook and R. Deardon (2009): “Inference in epidemic models without likelihoods,” Int. J. Biostat., 5, 1–37. Web of ScienceGoogle Scholar

Meeds, E., R. Leenders and M. Welling (2015): “Hamiltonian ABC,” arXiv preprint, (arXiv:1503.01916).

Naduvilezhath, L. N., L. E. Rose and D. Metzler (2011): “Jaatha: a fast composite-likelihood approach to estimate demographic parameters,” Mol. Ecol., 20, 2709–2723. CrossrefPubMedWeb of ScienceGoogle Scholar

Rosenblatt, M. (1991): Stochastic curve estimation, IMS, Hayward, CA. Google Scholar

Rubio, F. J. and A. M. Johansen (2013): “A simple approach to maximum intractable likelihood estimation,” Electron. J. Stat., 7, 1632–1654. CrossrefWeb of ScienceGoogle Scholar

Sadegh, P. (1997): “Constrained optimization via stochastic approximation with a simultaneous perturbation gradient approximation,” Automatica, 33, 889–892. CrossrefGoogle Scholar

Scott, D. (2015): Multivariate density estimation: theory, practice, and visualization, Wiley Series in Probability and Statistics. Wiley, New York. Google Scholar

Soubeyrand, S., F. Carpentier, N. Desassis and J. Chadœuf (2009): “Inference with a contrast-based posterior distribution and application in spatial statistics,” Stat. Methodol., 6, 466–477. CrossrefGoogle Scholar

Spall, J. C. (1992): “Multivariate stochastic approximation using a simultaneous perturbation gradient approximation,” IEEE T. Automat. Contr., 37, 352–355. Google Scholar

Spall, J. C. (2003): Introduction to stochastic search and optimization: estimation, simulation and control, Wiley, New York. Google Scholar

Stephens, M. (2007): “Inference under the coalescent,” In: Balding, D. J., Bishop, M., and Cannings, C. (Eds.), Handbook of statistical genetics, volume 2, John Wiley & Sons, New York, third edition, pp. 878–908. Google Scholar

Tellier, A., P. Pfaffelhuber, B. Haubold, L. Naduvilezhath, L. E. Rose, T. Städler, W. Stephan and D. Metzler (2011): “Estimating parameters of speciation models based on refined summaries of the joint site-frequency spectrum,” PLoS One, 6, 5. Web of ScienceGoogle Scholar

Toni, T., D. Welch, N. Strelkowa, A. Ipsen and M. P. H. Stumpf (2009): “Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems,” J. Roy. Soc. Interface, 6, 187–202. CrossrefGoogle Scholar

Wand, M. P. and M. C. Jones (1995): Kernel smoothing, Chapman & Hall, Boca Raton. Google Scholar

Wegmann, D., C. Leuenberger and L. Excoffier (2009): “Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood,” Genetics, 182, 1207–1218. CrossrefWeb of SciencePubMedGoogle Scholar

Wellek, S. (2010): Testing statistical hypotheses of equivalence and noninferiority, CRC Press, Taylor & Francis, Boca Raton. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.