Alberich, R., M. Llabrés, D. Sánchez, M. Simeoni, and M. Tuduri (2014): “MP-Align: alignment of metabolic pathways,” BMC Syst. Biol., 8, 58. CrossrefPubMedWeb of ScienceGoogle Scholar

Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock (2000): “Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium,” Nat. Genet., 25, 25–29. CrossrefPubMedGoogle Scholar

Benjamini, Y. and Y. Hochberg (1995): “Controling the false discorevy rate: a practical and powerful approach to multiple testing,” J. R. Stat. Soc. B, 57, 289–300. Google Scholar

Boersema, P. J., A. Kahraman, and P. Picotti (2015): “Proteomics beyond large-scale protein expression analysis,” Curr. Opin. Biotechnol., 34, 162–170. CrossrefPubMedWeb of ScienceGoogle Scholar

Butte, A. J. and I. S. Kohane (2000): “Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements,” Pac. Symp. Biocomput., 5, 415–426. Google Scholar

Butte, A. J., P. Tamayo, D. Slonim, T. R. Golub, and I. S. Kohane (2000): “Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks,” Proc. Natl. Acad. Sci. USA, 97, 12182–12186. CrossrefGoogle Scholar

Chang, L.-C., H.-M. Lin, E. Sibille, and G. C. Tseng (2013): “Meta-analysis methods for combining multiple expression profiles: comparisons, statistical characterization and an application guideline,” BMC Bioinformatics, 14, 368. CrossrefWeb of SciencePubMedGoogle Scholar

Chang, Y., J. W. Gray, and C. J. Tomlin (2014): “Exact reconstruction of gene regulatory networks using compressive sensing,” BMC Bioinformatics, 15, 400. CrossrefWeb of SciencePubMedGoogle Scholar

Draghici, S. (2003): Data Analysis tools for DNA microarrays, London: Chapman & Hall. Google Scholar

Dudoit, S., Y. H. Yang, M. J. Callow, and T. P. Speed (2002): “Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments,” Stat. Sin., 12, 111–139. Google Scholar

Fisher, R. A. (1934): “Statistical methods for research workers,” in Biological monographs and manuals, V, Edinburgh: Oliver and Boyd. Google Scholar

Gomes, L. I., G. H. Esteves, A. F. Carvalho, E. B. Cristo, R. Hirata, W. K. Martins, S. M. Marques, L. P. Camargo, H. Brentani, A. Pelosof, C. Zitron, R. a. Sallum, A. Montagnini, F. a. Soares, E. J. Neves, and L. F. L. Reis (2005): “Expression profile of malignant and nonmalignant lesions of esophagus and stomach: differential activity of functional modules related to inflammation and lipid metabolism,” Cancer Res., 65, 7127–7136. CrossrefPubMedGoogle Scholar

Hardin, J., A. Mitani, L. Hicks, and B. VanKoten (2007): “A robust measure of correlation between two genes on a microarray,” BMC Bioinformatics, 8, 220. PubMedWeb of ScienceCrossrefGoogle Scholar

Heyer, L. J., S. Kruglyak, and S. Yooseph (1999): “Exploring expression data: identification and analysis of coexpressed genes,” Genome Res., 9, 1106–1115. PubMedCrossrefGoogle Scholar

Ideker, T., O. Ozier, B. Schwikowski, and A. F. Siegel (2002): “Discovering regulatory and signaling circuits in molecular interaction networks,” Bioinformatics, 18, S233–S240. CrossrefGoogle Scholar

Ihaka, R. and R. Gentleman (1996): “R: A language for data analysis and graphics,” J. Comput. Graph. Stat., 5, 299–314. Google Scholar

Johnson, R. and D. Wichern (2002): Applied multivariate statistical analysis, 5th edition. New Jersey: Prentice Hall. Google Scholar

Kanehisa, M. and S. Goto (2000): “KEGG: kyoto encyclopedia of genes and genomes,” Nucleic Acids Res., 28, 27–30. CrossrefPubMedGoogle Scholar

Kanehisa, M., S. Goto, S. Kawashima, and A. Nakaya (2002): “The KEGG databases at GenomeNet,” Nucleic Acids Res., 30, 42–46. PubMedCrossrefGoogle Scholar

Kiani, N. a. and L. Kaderali (2014): “Dynamic probabilistic threshold networks to infer signaling pathways from time-course perturbation data,” BMC Bioinformatics, 15, 250. PubMedWeb of ScienceCrossrefGoogle Scholar

Langfelder, P. and S. Horvath (2008): “WGCNA: an R package for weighted correlation network analysis,” BMC Bioinformatics, 9, 559. Web of ScienceCrossrefGoogle Scholar

Langfelder, P. and S. Horvath (2012): “Fast R functions for robust correlations and hierarquical clustering,” J. Stat. Softw., 46, 11. Google Scholar

Mardia, K., J. Kent, and J. Bibby (1979): Multivariate analysis, New York: Academic Press. Google Scholar

Rahmatallah, Y., F. Emmert-Streib, and G. Glazko (2014): “Gene Sets Net Correlations Analysis (GSNCA): a multivariate differential coexpression test for gene sets,” Bioinformatics, 30, 360–8. CrossrefPubMedWeb of ScienceGoogle Scholar

Schäfer, J. and K. Strimmer (2005): “A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics,” Stat. Appl. Genet. Mol. Biol., 4, 32. Google Scholar

Segal, E., N. Friedman, D. Koller, and A. Regev (2004): “A module map showing conditional activity of expression modules in cancer,” Nat. Genet., 36, 1090–1098. CrossrefPubMedGoogle Scholar

Segal, E., M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman (2003): “Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data,” Nat. Genet., 34, 166–176. CrossrefPubMedGoogle Scholar

Shendure, J. and H. Ji (2008): “Next-generation DNA sequencing,” Nat. Biotechnol., 26, 1135–1145. Web of ScienceCrossrefPubMedGoogle Scholar

Song, L., P. Langfelder, and S. Horvath (2012): “Comparison of co-expression measures: mutual information, correlation, and model based indices,” BMC Bioinformatics, 13, 328. CrossrefWeb of SciencePubMedGoogle Scholar

Subramanian, A., P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P. Mesirov (2005): “Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles,” Proc. Natl. Acad. Sci. USA, 102, 15545–15550. CrossrefGoogle Scholar

Ulitsky, I. and R. Shamir (2007): “Identification of functional modules using network topology and high-throughput data,” BMC Syst. Biol., 1, 8. CrossrefWeb of SciencePubMedGoogle Scholar

Yang, I. V., E. Chen, J. P. Hasseman, W. Liang, B. C. Frank, S. Wang, V. Sharov, A. I. Saeed, J. White, J. Li, N. H. Lee, T. J. Yeatman, and J. Quackenbush (2002): “Within the fold: assessing differential expression measures and reproducibility in microarray assays,” Genome Biol., 3, 62. Google Scholar

Zhu, J. and M. Q. Zhang (2000): “Cluster, function and promoter: analysis of yeast expression array,” Pac. Symp. Biocomput., 5, 476–487. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.