Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Sanguinetti, Guido

IMPACT FACTOR 2017: 0.812
5-year IMPACT FACTOR: 1.104

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.456
Source Normalized Impact per Paper (SNIP) 2017: 0.527

Mathematical Citation Quotient (MCQ) 2017: 0.04

See all formats and pricing
More options …
Volume 17, Issue 5


Volume 18 (2019)

Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Assessing genome-wide significance for the detection of differentially methylated regions

Christian M. PageORCID iD: http://orcid.org/0000-0002-1897-3666
  • Department of Neurology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
  • Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, N-0407 Oslo, Norway
  • Department of Non-Communicable Diseases, Norwegian Institute of Public Health, N-0403 Oslo, Norway
  • orcid.org/0000-0002-1897-3666
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Linda Vos / Trine B. Rounge
  • Department of Research, Cancer Registry of Norway, Oslo, Norway
  • Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hanne F. Harbo
  • Department of Neurology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
  • Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, N-0407 Oslo, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bettina K. Andreassen
Published Online: 2018-09-19 | DOI: https://doi.org/10.1515/sagmb-2017-0050


DNA methylation plays an important role in human health and disease, and methods for the identification of differently methylated regions are of increasing interest. There is currently a lack of statistical methods which properly address multiple testing, i.e. control genome-wide significance for differentially methylated regions. We introduce a scan statistic (DMRScan), which overcomes these limitations. We benchmark DMRScan against two well established methods (bumphunter, DMRcate), using a simulation study based on real methylation data. An implementation of DMRScan is available from Bioconductor. Our method has higher power than alternative methods across different simulation scenarios, particularly for small effect sizes. DMRScan exhibits greater flexibility in statistical modeling and can be used with more complex designs than current methods. DMRScan is the first dynamic approach which properly addresses the multiple-testing challenges for the identification of differently methylated regions. DMRScan outperformed alternative methods in terms of power, while keeping the false discovery rate controlled.

This article offers supplementary material which is provided at the end of the article.

Keywords: differentially methylated regions; genomics scan statistics; sliding window


  • Aldous, D. (1989): Probability approximations via the Poisson clumping heuristic, Springer Science & Business Media.Google Scholar

  • Benjamini, Y., J. Taylor and R. A. Irizarry. (2018): “Selection corrected statistical inference for region detection with high-throughput assays.” J. Am. Stat. Assoc., 1(47).Google Scholar

  • Bock, C. (2012): “Analysing and interpreting DNA methylation data,” Nat. Rev. Genet., 13, 705–719.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Butcher, L. M. and S. Beck (2015): “Probe Lasso: a novel method to rope in differentially methylated regions with 450K DNA methylation data,” Methods, 72, 21–28.CrossrefWeb of ScienceGoogle Scholar

  • Du, P., X. Zhang, C. C. Huang, N. Jafari, W. A. Kibbe, L. Hou and S. M. Lin (2010): “Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis,” BMC Bioinformatics, 11, 587.CrossrefWeb of SciencePubMedGoogle Scholar

  • Feinberg, A. P., R. A. Irizarry, D. Fradin, M. J. Aryee, P. Murakami, T. Aspelund, G. Eiriksdottir, T. B. Harris, L. Launer, V. Gudnason and M. D. Fallin (2010): “Personalized epigenomic signatures that are stable over time and covary with body mass index,” Sci. Transl. Med., 2, 49ra67.PubMedWeb of ScienceGoogle Scholar

  • Hansen, K. D., B. Langmead and R. A. Irizarry (2012): “BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions,” Genome Biol., 13, R83.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Jaffe, A. E., P. Murakami, H. Lee, J. T. Leek, M. D. Fallin, A. P. Feinberg and R. A. Irizarry (2012): “Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies,” Int. J. Epidemiol., 41, 200–209.Web of SciencePubMedCrossrefGoogle Scholar

  • Jones, P. A. (2012): “Functions of DNA methylation: islands, start sites, gene bodies and beyond,” Nat. Rev. Genet., 13, 484–492.CrossrefWeb of SciencePubMedGoogle Scholar

  • Korthauer, K., S. Chakraborty, Y. Benjamini amd R. A. Irizarry. (2017): “Detection and accurate False Discovery Rate control of differentially methylated regions from Whole Genome Bisulfite Sequencing.” Biostatistics.Google Scholar

  • Laurent, L., E. Wong, G. Li, T. Huynh, A. Tsirigos, C. T. Ong, H. M. Low, K. W. Kin Sung, I. Rigoutsos, J. Loring and C. L. Wei (2010): “Dynamic changes in the human methylome during differentiation,” Genome Res., 20, 320–331.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Lun, A. T. and G. K. Smyth (2015): “csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows,” Nucleic Acids Res., 44, e45–e45.Web of ScienceGoogle Scholar

  • Peng, G., L. Luo, H. Siu, Y. Zhu, P. Hu, S. Hong, J. Zhao, X. Zhou, J. D. Reveille and L. Jin (2010): “Gene and pathway-based second-wave analysis of genome-wide association studies,” Eur. J. Hum. Genet., 18, 111–117.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Peters, T. J., M. J. Buckley, A. L. Statham, R. Pidsley, K. Samaras, V. L. R, S. J. Clark and P. L. Molloy (2015): “De novo identification of differentially methylated regions in the human genome,” Epigenetics Chromatin, 8, 6.PubMedWeb of ScienceGoogle Scholar

  • Rakyan, V. K., T. A. Down, D. J. Balding and S. Beck (2011): “Epigenome-wide association studies for common human diseases,” Nat. Rev. Genet., 12, 529–541.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Reiner-Benaim, A., R. W. Davis and K. Juneau (2014): “Scan statistics analysis for detection of introns in time-course tiling array data,” Stat. Appl. Genet. Mol. Biol., 13, 173–190.Web of SciencePubMedGoogle Scholar

  • Ritchie, M. E., B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi amd G. K. Smyth. (2015): “Limma powers differential expression analyses for RNA-sequencing and microarray studies,” Nucleic Acids Res., 43, e47–e60.Google Scholar

  • Rounge, T. B., C. M. Page, M. Lepisto, P. Ellonen, B. K. Andreassen and E. Weiderpass (2016): “Genome-wide DNA methylation in saliva and body size of adolescent girls,” Epigenomics, 8, 1495–1505.Web of ScienceCrossrefPubMedGoogle Scholar

  • Rozowsky, J., G. Euskirchen, R. K. Auerbach, Z. D. Zhang, T. Gibson, R. Bjornson, N. Carriero, M. Snyder and M. B. Gerstein (2009): “PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls,” Nat. Biotechnol., 27, 66–75.Web of ScienceCrossrefPubMedGoogle Scholar

  • Satterthwaite, F. E. (1946): “An approximate distribution of estimates of variance components,” Biometrics Bull., 2, 110–114.CrossrefGoogle Scholar

  • Shen, L., J. Zhu, S.-Y. Robert Li and X. Fan (2017): “Detect differentially methylated regions using non-homogeneous hidden Markov model for methylation array data,” Bioinformatics, 33, 3701–3708.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Siegmund, D. (1985): Sequential analysis: tests and confidence intervals. NY, USA, Springer Science & Business Media.Google Scholar

  • Siegmund, D. and B. Yakir (2007): The statistics of gene mapping. NY, USA, Springer Science & Business Media.Google Scholar

  • Siegmund, D. O., N. R. Zhang and B. Yakir (2011): “False discovery rate for scanning statistics,” Biometrika, 98, 979–985.Web of ScienceCrossrefGoogle Scholar

  • Slieker, R. C., S. D. Bos, J. J. Goeman, J. V. Bovee, R. P. Talens, R. van der Breggen, H. E. Suchiman, E. W. Lameijer, H. Putter, E. B. van den Akker, Y. Zhang, J. W. Jukema, P. E. Slagboom, I. Meulenbelt and B. T. Heijmans (2013): “Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450k array,” Epigenetics Chromatin, 6, 26.CrossrefWeb of SciencePubMedGoogle Scholar

  • Stouffer, S. A., E. A. Suchman, L. C. DeVinney, S. A. Star and R. M. Williams (1949): The American soldier: Adjustment during army life. (Studies in social psychology in World War II).Google Scholar

  • Sun, Y. V., A. M. Levin, E. Boerwinkle, H. Robertson and S. L. Kardia (2006): “A scan statistic for identifying chromosomal patterns of SNP association,” Genet. Epidemiol., 30, 627–635.PubMedCrossrefGoogle Scholar

  • Zhang, Y. (2008): “Poisson approximation for significance in genome-wide ChIP-chip tiling arrays,” Bioinformatics, 24, 2825–2831.Web of SciencePubMedCrossrefGoogle Scholar

About the article

aThese authors contributed equallly to this work.

bCurrent address: Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, N-0407 Oslo, Norway

Published Online: 2018-09-19

Funding Source: University of Oslo

Award identifier / Grant number: 531217/1231

Funding Source: Folkhälsan Research Foundation; The Academy of Finland

Award identifier / Grant number: 250704

This work was supported by the University of Oslo [Funder Id: 10.13039/501100005366, grant number 531217/1231]; Folkhälsan Research Foundation; The Academy of Finland [grant number 250704]; The Life and Health Medical Fund [grant number 1-23-28]; The Swedish Cultural Foundation in Finland [grant number 15/0897]; The Signe and Ane Gyllenberg Foundation [grant number 37-1977-43]; and The Yrjö Jahnsson Foundation [grant number 11486].


Ethics: The Coordinating Ethics Committees of the Hospital Districts of Helsinki and Uusimaa approved the study. Informed consent was obtained from all participants and as well as one of their legal guardians.

Availability of data and materials: The R package is placed at Bioconductor under the name DMRScan, along with the example data set used in this paper. The R-code for comparing the methods can be found in the GitHub repos for the of the R package: https://github.com/christpa/DMRScan.

Conflict of interest statement: The authors declare that they have no competing interests.

Citation Information: Statistical Applications in Genetics and Molecular Biology, Volume 17, Issue 5, 20170050, ISSN (Online) 1544-6115, DOI: https://doi.org/10.1515/sagmb-2017-0050.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in