Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Seminars in Cardiovascular Medicine

The Journal of Lithuanian Heart Association

1 Issue per year

Open Access
See all formats and pricing
More options …

Rationale of screening for early kidney damage in patients with high cardiovascular risk: nephrologist’s point of view

Laurynas Rimševičius
  • Corresponding author
  • Faculty of Medicine, Vilnius University, Vilnius, Lithuania
  • Centre of Nephrology, Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Diana Aksionova
  • Faculty of Medicine, Vilnius University, Vilnius, Lithuania
  • Centre of Nephrology, Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marius Miglinas
  • Faculty of Medicine, Vilnius University, Vilnius, Lithuania
  • Centre of Nephrology, Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jolita Badarienė
  • Centre of Cardiology and Angiology, Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ligita Ryliškytė
  • Centre of Cardiology and Angiology, Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alma Čypienė
  • Centre of Cardiology and Angiology, Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vytautas Kasiulevičius / Mantė Barzdenytė / Justina Tracevičiūtė / Aleksandras Laucevičius
  • Faculty of Medicine, Vilnius University, Vilnius, Lithuania
  • Centre of Cardiology and Angiology, Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-03 | DOI: https://doi.org/10.2478/semcard-2013-0001


Increased awareness of chronic kidney disease stimulates an interest towards early detection and prevention. The true prevalence of kidney injury varies from 10 to 40%, mostly depending on the methodology of the study and the population enrolled. A screening strategy targeting the highest risk groups, those with diabetes or hypertension, family history of diabetes, hypertension, or kidney disease, is likely to be most efficient and cost effective. Quantification for albuminuria should be performed using laboratorymethods or albumin to creatinine ratio and should be monitored at regular intervals. The most correct equations calculating glomerular filtration rate differ in separate populations, and the most accurate equations in patients with high cardiovascular risk are MDRD and CKD-EPI. Markers of early kidney damage have association with other target organs damage, even in subclinical or preclinical mode. Individuals at stage 4 and 5 chronic kidney disease, with higher levels of proteinuria, proteinuria together with haematuria, rapidly declining glomerular filtration rate, or poorly controlled hypertension should be referred to a nephrologist in order to identify the cause, provide recommendations, slow progression, or treat complications.

Keywords : chronic kidney disease; glomerular filtration rate; high cardiovascular risk; microalbuminuria; screening

  • [1] MacGregor MS. How common is early chronic kidney disease? A background paper prepared for the UK consensus conference on early chronic kidney disease. Nephrol DialTransplant 2007; 22(suppl 9):ix8-ix18.Google Scholar

  • [2] Anderson S, Halter JB, HazzardWR, Himmelfarb J, Horne FM, Kaysen GA et al. Prediction, progression, and outcomes of chronic kidney disease in older adults. J Am SocNephrol 2009; 20:1199-1209.Google Scholar

  • [3] Department of Health. The national service framework for renal services. Part two: chronic kidney disease, acute renal failure and end of life care. COI: London, 2005.Google Scholar

  • [4] Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2005; 67:2089-2100.CrossrefPubMedGoogle Scholar

  • [5] Toussaint N. Screening for early kidney disease. The CARI guidelines. Published online, 2011, http://www.cari.org.au/DNT%20workshop%202011/4%20Screening_Early%20CKD_DNT.pdf.Google Scholar

  • [6] Vassalotti JA, Li S, Chen SC, Collins AJ. Screening populations at increased risk of CKD: The Kidney Early Evaluation Program (KEEP) and the public health problem. AmJ Kidney Dis 2009; 53:S107-S114.Google Scholar

  • [7] Ishani A, Grandits GA, Grimm RH, Svendsen KH, Collins AJ, Prineas RJ et al. Association of single measurements of dipstick proteinuria, estimated glomerular filtration rate, and hematocrit with 25-year incidence of end-stage renal disease in the multiple risk factor intervention trial. J AmSoc Nephrol 2006; 17:1444-1452.Google Scholar

  • [8] Kidney Disease Outcomes Quality Initiative. Clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Am J Kidney Dis 2002; 39(Suppl 1):S46-S75.Google Scholar

  • [9] Shafi T, Coresh J. Definition and classification of stages of chronic kidney disease: screening for chronic kidney disease. Cardiorenal syndrome. Springer, 2010.Google Scholar

  • [10] Mariat C, Maillard N, Phayphet M, Thibaudin L, Laporte S, Alamartine E et al. Estimated glomerular filtration rate as an end point in kidney transplant trial: where do we stand? Nephrol Dial Transplant 2008; 23:33-38.PubMedGoogle Scholar

  • [11] Jones GR, Lim EM. The National Kidney Foundation guideline on estimation of the glomerular filtration rate. Clin Biochem Rev 2003; 24:95-98.Google Scholar

  • [12] Rule A. The CKD-EPI equation for estimating GFR from serum creatinine: real improvement ormore of the same? CJASN 2010; 5:951-953.Google Scholar

  • [13] Nyman H, Dowling T, Hudson J, Wendy L, Joy M, Nolin TD. Use of the Cockcroft-Gault versus the MDRD study equation to dose medications: an opinion of the nephrology practice and research network of the American College of clinical pharmacy. Pharmacotherapy 2011; 31:1130-1144.CrossrefGoogle Scholar

  • [14] Stevens LA, Nolin TD, Richardson MM, Feldman HI, Lewis JB, Rodby R et al. comparison of drug dosing recommendations based onmeasured GFR and kidney function estimating equations. AJKD 2009; 54:33-42.CrossrefGoogle Scholar

  • [15] Vervoort G, Willems H, Wetzels J. Assessment of glomerular filtration rate in healthy subjects and normoalbuminuric diabetic patients: validity of a new (MDRD) prediction equation. Nephrol Dial Transplant 2002; 17:1909-1913.PubMedGoogle Scholar

  • [16] Delanaye P, Cavalier E, Mariat C, Mailard N, Krzesinski JM. MDRD or CKD-EPI study equations for estimating prevalence of stage 3 CKD in epidemiological studies: which difference? Is this difference relevant? BMCNephrology 2010; 11:8.Google Scholar

  • [17] Delanaye P, Cohen E. Formula-based estimates of the GFR: equations variable and uncertain. Nephron Clin Pract 2008; 110:c48-c54.CrossrefPubMedGoogle Scholar

  • [18] Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150:604-612.PubMedCrossrefGoogle Scholar

  • [19] Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD Study equation for estimated glomerular filtration rate. JAMA 2012; 307:1941-1951.PubMedGoogle Scholar

  • [20] Kilbride HS, Stevens PE, Eaglestone G, Knight S, Carter JL, Delaney MP et al. Accuracy of the MDRD (Modification of Diet in Renal Disease) study and CKD-EPI (CKD Epidemiology Collaboration) equations for estimation of GFR in the elderly. Am J Kidney Dis 2013; 61:57-66.PubMedCrossrefGoogle Scholar

  • [21] Pugliese G, Solini A, Bonora E, Orsi E, Zerbini G, Giorgino F et al. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation provides a better definition of cardiovascular burden associated with CKD than the Modification of Diet in Renal Disease (MDRD) study formula in subjects with type 2 diabetes. Atherosclerosis 2011; 218:194-199.PubMedGoogle Scholar

  • [22] Miller WG, Bruns DE, Hortin GL, Sandberg S, Aakre KM, McQueen MJ et al. Current issues in measurementand reporting of urinary albumin excretion. Clin Chem 2009; 55:24-38.PubMedGoogle Scholar

  • [23] MillerWG, Bruns DE. Laboratory issues in measuring and reporting urine albumin. Nephrol Dial Transplant 2009; 24:717-718.Google Scholar

  • [24] Mura-Galelli MJ, Voegel JC, Behr S, Bres EF, Schaaf P. Adsorption/desorption of human serum albumin on hydroxyapatite: a critical analysis of the Langmuir model. Proc Natl Acad Sci USA 1991; 88:5557-5561.CrossrefGoogle Scholar

  • [25] Comper WD, Osicka TM. Detection of urinary albumin. Adv Chronic Kidney Dis 2005; 12:170-176.PubMedGoogle Scholar

  • [26] Methven S, MacGregor MS, Traynor JP, O‘Reilly DS, Deighan CJ. Assessing proteinuria in chronic kidney disease: protein-creatinine ratio versus albumin-creatinine ratio. Nephrol Dial Transplant 2010; 25:2991-2996.PubMedGoogle Scholar

  • [27] Comper WD, Jerums G, Osicka TM. Differences in urinary albumin detected by four immunoassays and high-performance liquid chromatography. Clin Biochem 2004; 37:105.PubMedCrossrefGoogle Scholar

  • [28] Shaikh A, Seegmiller JC, Borland TM, Burns BE, Ladwig PM, Singh RJ et al. Comparison between immunoturbidimetry, size-exclusion chromatography, and LC-MS to quantify urinary albumin. Clin Chem 2008; 54:1504-1510.CrossrefPubMedGoogle Scholar

  • [29] McQueen MJ, Gerstein HC, Pogue J, Mann JF, Yusuf S. Reevaluation by high performance liquid chromatography: clinical significance of microalbuminuria in individuals at high risk of cardiovascular disease in the Heart Outcomes Prevention Evaluation (HOPE) study. Am J Kidney Dis 2006; 48:889-896.PubMedCrossrefGoogle Scholar

  • [30] Clase CM, St Pierre MW, Churchill DN. Conversion between bromcresol green- and bromcresol purplemeasured albumin in renal disease. Nephrol Dial Transplant 2001; 16:1925-1929.Google Scholar

  • [31] Pedrinelli R, Penno G, Dell‘Omo G, Bandinelli S, Giorgi D, Di Bello V et al. Microalbuminuria and transcapillary albumin leakage in essential hypertension. Hypertension 1999; 34:491-495.CrossrefPubMedGoogle Scholar

  • [32] Chen YH, Chen HS, Tarng DC. More impact of microalbuminuria on retinopathy than moderately reduced GFR among type 2 diabetic patients. Diabetes Care 2012; 35:803-808.Google Scholar

  • [33] Berni A, Ciani E, Bernetti M, Cecioni I, Berardino S, Poggesi L et al. Renal resistive index and low-grade inflammation in patients with essential hypertension. J HumHypertens 2012; 26:723-730.Google Scholar

  • [34] Umemura T, Kawamura T, Sakakibara T, Mashita S, Hotta N, Sobue G. Microalbuminuria is independently associated with deep or infratentorial brain microbleeds in hypertensive adults. Am J Hypertens 2012; 25:430-436.PubMedCrossrefGoogle Scholar

  • [35] Sierra C, Lopez-Soto A, Coca A. Connecting cerebral white matter lesions and hypertensive target organ damage. J Aging Res 2011; 2011:438978.Google Scholar

  • [36] Jørgensen L, Jenssen T, Johnsen SH, Mathiesen EB, Heuch I, Joakimsen O et al. Albuminuria as risk factor for initiation and progression of carotid atherosclerosis in non-diabetic persons: the Tromsø Study. Eur Heart 2007; 28:363-369.CrossrefGoogle Scholar

  • [37] Joosten H, Izaks GJ, Slaets JP, de Jong PE, Visser ST, Bilo HJ et al. Association of cognitive function with albuminuria and eGFR in the general population. Clin J Am Soc Nephrol 2011; 6:1400-1409.CrossrefGoogle Scholar

  • [38] Heringa SM, van den Berg E, Dekker JM, Nijpels G, Kessels RP, Kappelle LJ et al. Albuminuria and cognitive functioning in an older population: The Hoorn Study. DementGeriatr Cogn Disord 2011; 32:182-187.Google Scholar

  • [39] Manaviat MR, Afkhami M, Shoja MR. Retinopathy and microalbuminuria in type II diabetic patients. BMC Ophthalmol 2004; 4:9.PubMedCrossrefGoogle Scholar

  • [40] Navarro-González JF, Mora C, Muros M, García J, Donate J, Cazaña V. Relationship between inflammation and microalbuminuria in prehypertension. J Hum Hypertens2013; 27:119-125.CrossrefGoogle Scholar

  • [41] Shantha GP, Kumar AA, Bhaskar E, Sivagnanam K, Srinivasan D, Sundaresan M et al. Hypertensive retinal changes, a screening tool to predict microalbuminuria in hypertensive patients: a cross-sectional study. NephrolDial Transplant 2010; 25:1839-1845.Google Scholar

  • [42] Wu CK, Yang CY, Tsai CT, Chiu FC, Huang YT, Lee JK et al. Association of low glomerular filtration rate and albuminuria with peripheral arterial disease: The National Health and Nutrition Examination Survey, 1999-2004. Atherosclerosis 2010; 209:230-234.Google Scholar

  • [43] Mensah GA, Croft JB, Giles WH. The heart, kidney, and brain as target organs in hypertension. Cardiol Clin 2002; 20:225-247.PubMedCrossrefGoogle Scholar

  • [44] Feldt-Rasmussen B. Microalbuminuria, endothelial dysfunction and cardiovascular risk. Diabetes Metab 2000; 26(Suppl 4):64-66.Google Scholar

  • [45] Iseki K, Kinjo K, Iseki C, Takishita S. Relationship between predicted creatinine clearance and proteinuria and the risk of developing ESRD in Okinawa, Japan. Am J KidneyDis 2004; 44:806-814.Google Scholar

  • [46] Chadban SJ, Briganti EM, Kerr PG, Dunstan DW,Welborn TA, Zimmet PZ et al. Prevalence of kidney damage in Australian adults: The AusDiab kidney study. J Am SocNephrol 2003; 14(7 Suppl 2):S131-S138. Google Scholar

  • [47] Viktorsdottir O, Palsson R, Andresdottir MB, Aspelund T, Gudnason V, Indridason OS. Prevalence of chronic kidney disease based on estimated glomerular filtration rate and proteinuria in Icelandic adults. Nephrol Dial Transplant 2005; 20:1799-1807.Google Scholar

  • [48] Garg AX, Kiberd BA, Clark WF, Haynes RB, Clase CM. Albuminuria and renal insufficiency prevalence guides population screening: results from the NHANES III. KidneyInt 2002; 61:2165-2175.Google Scholar

  • [49] Coresh J, Astor BC, Greene T, Eknovan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third national health and nutrition examination survey. Am J Kid Dis 2003; 41:1-12.CrossrefGoogle Scholar

  • [50] Coresh J, Byrd-Holt D, Astor BC, Briggs JP, Eggers PW, Lacher DA, Hostetter TH. Chronic kidney disease awareness, prevalence, and trends among U.S. adults, 1999 to 2000. J Am Soc Nephrol 2005; 16:180-188.Google Scholar

  • [51] Hallan SI, Coresh J, Astor BC, Asberg A, Powe NR, Romundstad S et al. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol 2006; 17:2275-2284. 8 PubMedCrossrefGoogle Scholar

About the article

Published Online: 2013-10-03

Published in Print: 2013-09-01

Citation Information: Seminars in Cardiovascular Medicine, Volume 19, Issue 1, Pages 1–8, ISSN (Online) 1822-7767, DOI: https://doi.org/10.2478/semcard-2013-0001.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in