Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Journal of the International Association for Semiotic Studies / Revue de l'Association Internationale de Sémiotique

Editor-in-Chief: Danesi, Marcel

IMPACT FACTOR 2018: 0.509

CiteScore 2018: 0.23

SCImago Journal Rank (SJR) 2018: 0.232
Source Normalized Impact per Paper (SNIP) 2018: 0.478

Agenzia Nazionale di Valutazione del Sistema Universitario e della Ricerca: Classe A

See all formats and pricing
More options …
Volume 2015, Issue 207


A Peircean typology of cultural prime symbols: Culture as category

Steven Bonta
  • Corresponding author
  • Department of Arts and Humanities, Altoona College, Penn State University, 3000 Ivyside Park, Altoona, PA 16601, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-07-11 | DOI: https://doi.org/10.1515/sem-2015-0038


Oswald Spengler first showed that every macroculture can be conceived of as an accretion of signs representing in various contexts a single abstract Prime Symbol. But this semiotic model of culture is not confined to the so-called “great civilizations”; it is applicable to every culture. In seeking a typology of Prime Symbols (and hence, a semiotic typology of cultures), we show that that the Peircean Categories Firstness, Secondness, and Thirdness (including the “degenerate” Categories Firstness of Secondness, Firstness of Thirdness, and Secondness of Thirdness) are exemplified in the great range of cultural semiotic types, and that, because of their universality and generality, these Categories are the best semiotic lens through which cultural Prime Symbols can be understood.

Keywords: Peirce; Spengler; Firstness; Secondness; Thirdness; category


  • Biggs, N. L. 1979. The roots of combinatorics. Historia Mathematica 6. 109–136.CrossrefWeb of ScienceGoogle Scholar

  • Bonta, Steven. 2014. Towards a semiotic theory of historico-cultural cycles: The semiotic contours of Spengler’s “prime symbols. Semiotica 202(1/4). 589–607.Web of ScienceGoogle Scholar

  • Bressoud, David. 2002. Was calculus invented in India? College Mathematics Journal 33(11). 2–13.CrossrefGoogle Scholar

  • Dauben, Joseph W. 2007. Chinese mathematics. In Victor Katz (ed.), The mathematics of Egypt, Mesopotamia, China, India, and Islam, 187–384. Princeton & Oxford: Princeton University Press.Google Scholar

  • Durkheim, Emile. 1995 [1912]. The elementary forms of religious life. New York: Free Press.Google Scholar

  • Durkheim, Emile & Marcel Mauss. 1963 [1903]. Primitive classification. Chicago: University of Chicago Press.Google Scholar

  • Eliade, Mircea. 1960. Myths, dreams, and mysteries. New York: Harper & Row.Google Scholar

  • Eliade, Mircea. 1964. Shamanism: Archaic techniques of ecstasy. Princeton: Princeton University Press.Google Scholar

  • Kant, Immanuel. 1991 [1781]. Critique of pure reason, Vasilis Politis (trans.). London: Dent.Google Scholar

  • Katz, Victor J. 1995. Ideas of calculus in Islam and India. Mathematics Magazine 68(3). 163–174.CrossrefGoogle Scholar

  • Krishnamurti, Bhadriraju. 2003. The Dravidian languages. Cambridge: Cambridge University Press.Google Scholar

  • Lawlor, Robert. 1991. Voices of the first day: Awakening in the Aboriginal dreamtime. Rochester, VT: Inner Traditions International,.Google Scholar

  • LaTourette, Kenneth Scott. 1967 [1934]. The Chinese: Their history and culture. New York: Macmillan.Google Scholar

  • Lévi-Strauss, Claude. 1963. Totemism. Boston: Beacon Press.Google Scholar

  • Matvievskaya, Galina. 1987. The theory of quadratic irrationals in medieval Oriental mathematics. Annals of the New York Academy of Sciences 500. 253–277.CrossrefGoogle Scholar

  • Myers, Fred R. 1986. Pintupi country, Pintupi self. Washington, DC: Smithsonian Institution Press.Google Scholar

  • Peirce, Charles S. 1931–1966. The collected papers of Charles S. Peirce, 8 vols., C. Hartshorne, P. Weiss & A. W. Burks (eds.). Cambridge: Harvard University Press. [Reference to Peirce’s papers will be designated CP followed by volume and paragraph number.]Google Scholar

  • Peirce, Charles S. 1998. Essential Peirce: Selected philosophical writings, vol. 2, Peirce Edition Project (eds.). Bloomington: Indiana University Press. [Reference to vol. 2 of Essential Peirce will be designated EP 2.]Google Scholar

  • Robertson, John S. 1994. Linguistic implications of the Peircian sign and an analysis of the English inflectional morphemes –ing, –ed, and –s. Semiotica 102(3/4). 179–223.CrossrefGoogle Scholar

  • Robertson, John S. & Jeffrey S. Turley. 2003. A Peircean analysis of the American-Spanish clitic pronoun system. Semiotica 145(1/4). 21–70.Google Scholar

  • Salomon, Richard. 1995. On the origin of the early Indian scripts. Journal of the American Oriental Society 115(2). 271–279.CrossrefGoogle Scholar

  • Singh, Parmanand. 1985. The so-called Fibonacci numbers in ancient and medieval India. Historia Mathematica 12. 229–244.CrossrefGoogle Scholar

  • Spengler, Oswald. 1926. The decline of the West, 2 vols. New York: Alfred A. Knopf.Google Scholar

  • Stanner, W. E. H. 1989. On aboriginal religion. Sydney: University of Sydney.Google Scholar

  • Thom, René. 1985. From the icon to the symbol. In Robert E. Innis (ed.), Semiotics: An introductory anthology, 272–291. Bloomington: Indiana University Press.Google Scholar

  • Thom, René. 1990. Semio physics: A sketch. California: Addison-Wesley.Google Scholar

  • Verran, Helen. 2000. Aboriginal Australian mathematics: Disparate mathematics of land ownership. In Helaine Selin (ed.), Mathematics across cultures: The history of non-Western mathematics, 289–312. Dordrecht: Kluwer.Google Scholar

About the article

Published Online: 2015-07-11

Published in Print: 2015-10-01

Citation Information: Semiotica, Volume 2015, Issue 207, Pages 251–277, ISSN (Online) 1613-3692, ISSN (Print) 0037-1998, DOI: https://doi.org/10.1515/sem-2015-0038.

Export Citation

©2015 by De Gruyter Mouton.Get Permission

Comments (0)

Please log in or register to comment.
Log in