Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Semiotica

Journal of the International Association for Semiotic Studies / Revue de l'Association Internationale de Sémiotique

Editor-in-Chief: Danesi, Marcel

6 Issues per year


IMPACT FACTOR 2017: 0.183
5-year IMPACT FACTOR: 0.283

CiteScore 2017: 0.23

SCImago Journal Rank (SJR) 2017: 0.228
Source Normalized Impact per Paper (SNIP) 2017: 0.634

Agenzia Nazionale di Valutazione del Sistema Universitario e della Ricerca: Classe A

Online
ISSN
1613-3692
See all formats and pricing
More options …
Volume 2017, Issue 218

Issues

The embodiment of connotations: A proposed model

Yair Neuman / Newton Howard / Louis Falissard / Rafi Malach
Published Online: 2017-07-11 | DOI: https://doi.org/10.1515/sem-2016-0112

Abstract

The idea that abstract words are grounded in our sensorimotor experience is gaining support and popularity, as observed in the increasing number of studies dealing with “neurosemantics.” Therefore, it is important to form models that explain how to bridge the gap between basic bodily experiences and abstract language. This paper focuses on the embodiment of connotations, such as “sweet” in “sweet baby,” where the adjective has been abstracted from its concrete and embodied sense. We summarize several findings from recent studies in neuroscience and the cognitive sciences suggesting that emotion, body, and language are three factors required for understanding the emergence of abstract words, and (1) propose a model explaining how these factors contribute to the emergence of connotations, (2) formulate a computational model instantiating our theoretical model, and (3) test our model in a task involving the automatic identification of connotations. The results support our model pointing to the role of embodiment in the formation of connotations.

Keywords: embodiment; neurosemantics; connotations; computational semiotics

References

  • Borghi, A. M. & F. Binkofski. 2014. Words as social tools: An embodied view on abstract concepts. New York: Springer.Google Scholar

  • CP 7.219. 1933. The collected papers of Charles S. Peirce, 8 vols., C. Hartshorne, P. Weiss & A. W. Burks (eds.). Cambridge: Harvard University Press.Google Scholar

  • Danesi, M. 2003. Metaphorical “networks” and verbal communication: A semiotic perspective on human discourse. Sign Systems Studies 31. 341–363.Google Scholar

  • Davies, M. 2009. The 385+ million word Corpus of Contemporary American English (1990–2008+): Design, architecture, and linguistic insights. International Journal of Corpus Linguistics 14(2). 159–190.Web of ScienceCrossrefGoogle Scholar

  • Dove, G. 2014. Thinking in words: Language as an embodied medium of thought. Topics in Cognitive Science 6(3). 371–389.CrossrefWeb of ScienceGoogle Scholar

  • Engel, A. K., A. Maye, M. Kurthen & P. König. 2013. Where’s the action? The pragmatic turn in cognitive science. Trends in Cognitive Sciences 17(5). 202–209.Web of ScienceCrossrefGoogle Scholar

  • Hagoort, P. & P. Indefrey. 2014. The neurobiology of language beyond single words. Annual Review of Neuroscience 37. 347–362.CrossrefWeb of ScienceGoogle Scholar

  • Harnad, S. 1990. The symbol grounding problem. Physica D: Nonlinear Phenomena 42(1). 335–346.CrossrefGoogle Scholar

  • Harnad, S. 2005. To cognize is to categorize: Cognition is categorization. In C. Lefebvre & H. Cohen (eds.), Handbook of categorization in cognitive science, 20–45. Amsterdam: Elsevier.Google Scholar

  • Hoffman, P. 2015. The meaning of “life” and other abstract words: Insights from neuropsychology. Journal of Neuropsychology 10(2). 317–343.Web of ScienceGoogle Scholar

  • Kousta, S. T., G. Vigliocco, D. P. Vinson, M. Andrews & E. Del Campo. 2011. The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140(1). 14–34.CrossrefWeb of ScienceGoogle Scholar

  • Krishnakumaran, S. & X. Zhu. 2007. Hunting elusive metaphors using lexical resources. In Proceedings of the Workshop on Computational approaches to Figurative Language, 13–20. Association for Computational Linguistics.Google Scholar

  • Kyselo, M. & E. Di Paolo. 2013. Locked-in syndrome: A challenge for embodied cognitive science. Phenomenology and the Cognitive Sciences 14. 517–542.Web of ScienceGoogle Scholar

  • Lakoff, G. 2014. Mapping the brain’s metaphor circuitry: Metaphorical thought in everyday life. Frontiers in Human Neuroscience 8. 958.Google Scholar

  • Lakoff, G. & M. Johnson. 1999. Philosophy in the flesh. New York: Basic.Google Scholar

  • Light, M. & W. Greiff. 2002. Statistical models for the induction and use of selectional preferences. Cognitive Science 26(3). 269–281.CrossrefGoogle Scholar

  • Maouene, J., N. Sethuraman, A. Laakso & M. Maouene. 2011. The body region correlates of concrete and abstract verbs in early child language. Cognition, Brain, Behavior 15(4). 339–383.Google Scholar

  • Meteyard, L., S. R. Cuadrado, B. Bahrami & G. Vigliocco. 2012. Coming of age: A review of embodiment and the neuroscience of semantics. Cortex 48(7). 788–804.Web of ScienceCrossrefGoogle Scholar

  • Moseley, R. L. & F. Pulvermüller. 2014. Nouns, verbs, objects, actions, and abstractions: Local fMRI activity indexes semantics, not lexical categories. Brain and Language 132. 28–42.CrossrefWeb of ScienceGoogle Scholar

  • Neuman, Y., D. Assaf, Y. Cohen, M. Last, S. Argamon, N. Howard & O. Frieder. 2013. Metaphor identification in large texts corpora. PloS One 8(4). e62343.Web of ScienceCrossrefGoogle Scholar

  • Neuman, Y., P. Turney & Y. Cohen. 2012. How language enables abstraction: A study in computational cultural psychology. Integrative Psychological and Behavioral Science 46(2). 129–145.CrossrefWeb of ScienceGoogle Scholar

  • Pennington, J., R. Socher & C. D. Manning. 2014. GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543. Association for Cognitive Linguistics.Google Scholar

  • Pulvermüller, F. 2013. How neurons make meaning: Brain mechanisms for embodied and abstract-symbolic semantics. Trends in Cognitive Sciences 17(9). 458–470.Web of ScienceCrossrefGoogle Scholar

  • Shebani, Z. & F. Pulvermüller. 2013. Moving the hands and feet specifically impairs working memory for arm- and leg-related action words. Cortex 49(1). 222–231.CrossrefWeb of ScienceGoogle Scholar

  • Tekiroğlu, S. S., G. Özbal & C. Strapparava. 2014. Sensicon: An automatically constructed sensorial lexicon. In Proceedings of the 2014 conference on Empirical Methods in Natural Language Processing (EMNLP), 1511–1521. Association for Cognitive Linguistics.Google Scholar

  • Turney, P. D., Y. Neuman, D. Assaf & Y. Cohen. 2011. Literal and metaphorical sense identification through concrete and abstract context. In Proceedings of the 2011 conference on the Empirical Methods in Natural Language Processing (EMNLP), 680–690. Association for Cognitive Linguistics.Google Scholar

  • Turney, P. D. & P. Pantel. 2010. From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research 37(1). 141–188.Google Scholar

  • Vigliocco, G., S. T. Kousta, P. A. Della Rosa, D. P. Vinson, M. Tettamanti, J. T. Devlin & S. F. Cappa. 2014. The neural representation of abstract words: The role of emotion. Cerebral Cortex 24(7). 1767–1777.Web of ScienceCrossrefGoogle Scholar

  • Vincent-Lamarre, P., A. B. Massé, M. Lopes, M. Lord, O. Marcotte & S. Harnad. 2016. The latent structure of dictionaries. Topics in Cognitive Science 8(3). 625–659.Web of ScienceCrossrefGoogle Scholar

  • Wang, J., J. A. Conder, D. N. Blitzer & S. V. Shinkareva. 2010. Neural representation of abstract and concrete concepts: A meta‐analysis of neuroimaging studies. Human Brain Mapping 31. 1459–1468.CrossrefWeb of ScienceGoogle Scholar

  • Warriner, A. B., V. Kuperman & M. Brysbaert. 2013. Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods 45(4). 1191–1207.Web of ScienceCrossrefGoogle Scholar

  • Xiao, X., D. Zhao, Q. Zhang & C. Y. Guo. 2012. Retrieval of concrete words involves more contextual information than abstract words: Multiple components for the concreteness effect. Brain and Language 120(3). 251–258.CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2017-07-11

Published in Print: 2017-09-26


Citation Information: Semiotica, Volume 2017, Issue 218, Pages 65–79, ISSN (Online) 1613-3692, ISSN (Print) 0037-1998, DOI: https://doi.org/10.1515/sem-2016-0112.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in