Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studia Geotechnica et Mechanica

The Journal of Wroclaw University of Technology

4 Issues per year

Open Access
See all formats and pricing
More options …

Application of artificial neural networks to predict the deflections of reinforced concrete beams

Mateusz Kaczmarek / Agnieszka Szymańska
Published Online: 2016-07-15 | DOI: https://doi.org/10.1515/sgem-2016-0017


Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies.

Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.

Keywords: reinforced concrete beams; research; deflection; artificial neural network


  • [1] Kuczyński W., Concrete Structures: Continuum theory of reinforced concrete flexural, [in Polish: Konstrukcje betonowe: kontynualna teoria zginania żelbetu], PWN, Warszawa, 1971.Google Scholar

  • [2] Ryżyński A., Wołowicki W., The proposal for calculating deflection of reinforced concrete beam with regard to its deformed smoothness, [in Polish: Propozycja obliczania ugięć belki żelbetowej z uwzględnieniem niegładkości jej odkształconej], Archiwum Inżynierii Lądowej, 1968, 2, 329–347.Google Scholar

  • [3] Borcz A., Theory of reinforced concrete structures, [in Polish: Teoria konstrukcji żelbetowych], Vol. II, Wydawnictwo Politechniki Wrocławskiej, Wrocław, 1986.Google Scholar

  • [4] Polski Komitet Normalizacyjny. Concrete, reinforced concrete and prestressed structures. Calculations and design [in Polish: Konstrukcje betonowe, żelbetowe i sprężone. Obliczenia statyczne i projektowanie], PN-B-03264:2002, Warszawa, 2002.Google Scholar

  • [5] Polski Komitet Normalizacyjny. Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings, [in Polish: Eurokod 2: Projektowanie konstrukcji z betonu – Część 1-1: Reguły ogólne i reguły dla budynków], PN-EN-1992-1-1:2008, Warszawa 2002.Google Scholar

  • [6] Kubicki J., Deflections of reinforced concrete beams calculated according to PN-84/B-03264 and Eurocode 2.1 methods in comparison with test results, [in Polish: Ugięcie belek żelbetowych obliczone według PN-84/B-03264 i Eurokodu 2.1 w konfrontacji z wynikami badań doświadczalnych], Prace Instytutu Techniki Budowlanej, 1999, 28, 3–26.Google Scholar

  • [7] McCulloch W., Pitts W., A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics, 1943, 5, 115–133.CrossrefGoogle Scholar

  • [8] Schabowicz K., Neural networks in the NDT identification of the strength of concrete, Archives of Civil Engineering, 2005, 51(3), 371–382.Google Scholar

  • [9] Schabowicz K., Hoła B., Application of artificial neural networks in predicting earthmoving machinery effectiveness ratios, Archives of Civil and Mechanical Engineering, 2008, 8(4), 73–84.Google Scholar

  • [10] Ochmański M., Bzówka J., Back analysis of SCL tunnels based on Artificial Neural Network, Architecture, Civil Engineering, Environment – ACEE Journal, 2012, 3, 73–81.Google Scholar

  • [11] Guzelbey I.H., Cevik A., Gogus M.T., Prediction of rotation capacity of wide flange beams using neural networks, Journal of Constructional Steel Research, 2006, Vol. 62, 950–961.CrossrefGoogle Scholar

  • [12] Pala M., Caglar N., A parametric study for distortional buckling stress on cold-formed steel using a neural network, Journal of Constructional Steel Research, 2007, Vol. 63, 686–691.CrossrefWeb of ScienceGoogle Scholar

  • [13] Chaudhary S., Pendharkar U., Nagpal A.K., Bending moment prediction for continuous composite beams by neural networks, Advances in Structural Engineering, 2007, Vol. 10, 439–454.Google Scholar

  • [14] Chaudhary S., Pendharkar U., Nagpal A.K., Neural network for bending moment in continuous composite beams considering cracking and time effects in concrete structures, Engineering Structures, 2007, Vol. 29, 269–279.Google Scholar

  • [15] Tadesse Z., Patel K.A., Chaudhary S., Nagpal A.K., Neural networks for prediction of deflection in composite bridges, Journal of Constructional Steel Research, 2012, Vol. 68(1), 138–149.Web of ScienceCrossrefGoogle Scholar

  • [16] Mohammadhassani M., Nezamabadi-Pour H., Jumaat M.Z., Jameel M., Arumugam A.M.S., Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams, Computers and Concrete, 2013, Vol. 11(3), 237–252.CrossrefGoogle Scholar

  • [17] Tadeusiewicz R., Neural networks, [in Polish: Sieci neuronowe], Akademicka Oficyna Wydawnicza RM, Warszawa, 1993.Google Scholar

  • [18] Polski Komitet Normalizacyjny. Metals – Tensile testing – Method of test at ambient temperature, [in Polish: Metale – Próba rozciągania – Metoda badań w temperaturze otoczenia]. PN-EN 10002-1:2004, Warszawa, 2004.Google Scholar

  • [19] Osowski S., Neural networks in terms of algorithmic, [in Polish: Sieci neuronowe w ujęciu algorytmicznym], Wydawnictwo Naukowo-Techniczne, Warszawa, 1996.Google Scholar

About the article

Published Online: 2016-07-15

Published in Print: 2016-06-01

Citation Information: Studia Geotechnica et Mechanica, Volume 38, Issue 2, Pages 37–46, ISSN (Online) 2083-831X, DOI: https://doi.org/10.1515/sgem-2016-0017.

Export Citation

© 2016 Mateusz Kaczmarek et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in