Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studia Geotechnica et Mechanica

The Journal of Wroclaw University of Technology

4 Issues per year

Open Access
See all formats and pricing
More options …

Stress-Dilatancy for Soils. Part I: The Frictional State Theory

Zenon Szypcio
Published Online: 2017-02-08 | DOI: https://doi.org/10.1515/sgem-2016-0030


An unconventional subdivision of volumetric strains, the newly formulated frictional and critical frictional states and some of energetic and stress condition assumptions result in new stress-plastic dilatancy relationships. These new stress-plastic dilatancy relationships are functions of the deformation mode and drainage conditions. The critical frictional state presented in this paper is a special case of the classical critical state.

Keywords: soils; dilatancy; critical state; frictional state; critical frictional state


  • [1] BEEN K., JEFFERIES M., Stress-dilatancy in very loose sand, Can. Geotech. J. 2004, 41, No.5, 972-989.CrossrefGoogle Scholar

  • [2] BOLTON M.D., The strength and dilatancy of sands, Geotechnique, 1986, 36, No. 1, 65-78.CrossrefGoogle Scholar

  • [3] COOP M.R., The mechanics of uncemented carbonate sands, Geotechnique, 1990, 40, No. 4, 607-626.CrossrefGoogle Scholar

  • [4] COOP M.R., WILSON S.M., Behaviour of Hydrocarbon Reservoir Sands and Sandstones, International Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129, No. 11, 1010-1019.Google Scholar

  • [5] COOP M.R., On the mechanics of reconstituted and natural sands, [in:] Di Benedetto et al. (eds.), Deformation Characteristics of Geomaterials, Taylor & Francis Group PLC, London, UK, 2005.Google Scholar

  • [6] CORNFORTH D.H., Some experiments on the influence of strain condition on the strength of sand, Geotechnique, 1964, 14, No. 1, 143-167.CrossrefGoogle Scholar

  • [7] COTECCHIA F., CHANDLER R.J., A general framework for the mechanical behaviour of clays, Geotechnique, 2000, 50, No. 4, 431-447.CrossrefGoogle Scholar

  • [8] CUCCOVILLO T., COOP M.R., On the mechanics of structured sands, Geotechnique, 1999, 49, No. 6, 741-760.CrossrefGoogle Scholar

  • [9] DE JOSSELIN DE JONG G., Rowe’s stress-dilatancy relation based on friction, Geotechnique, 1976, 26, No. 3, 527-534.CrossrefGoogle Scholar

  • [10] DESIMONE A., TAMAGNINI C., Stress-dilatancy based modelling of granular materials and extension to soils with crushable grains, Int. J. Numer. Anal. Meth. Geomech., 2005, 29, 73-101.CrossrefGoogle Scholar

  • [11] FONSECA J., The evolution of morphology and fabric of a sand during shearing, PhD Thesis. Depart. of Civil and Env. Eng. Imperial College, London, UK, 2011.Google Scholar

  • [12] GUTERREZ M., ISHIHARA K., Non-coaxiality and energy dissipation in granular materials, Soils and Foundations, 2000, 40, No. 2, 49-59.CrossrefGoogle Scholar

  • [13] GUTIERREZ M., WANG J., Non-coaxial version of Rowe’s stressdilatancy relation, Granular Matter, 2009, 11(2), 129-137.Google Scholar

  • [14] HASSANLOURAD M., SELEHZADEH H., SHAHNAZARI H., Dilation and particle breakage effects on the shear strength of calcareous sands based on energy aspects, Int. J. Civil Eng., 2008, 6, No. 2, 108-119.Google Scholar

  • [15] HORNE M.R., The Behaviour of an Assembly of Rotund, Rigid, Cohesionless Particles I, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1965a, Vol. 286, No. 1404, 62-78.Google Scholar

  • [16] HORNE M.R., The Behaviour of an Assembly of Rotund, Rigid, Cohesionless Particles II, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1965b, Vol. 286, No. 1404, 79-97.Google Scholar

  • [17] LI X.S., DEFALIAS Y.F., Dilatancy for cohesionless soils, Geotechnique, 2000, 50, No.4, 449-460.CrossrefGoogle Scholar

  • [18] LUZZANI L., COOP M.R., On the relationship between particle breakage and the critical state of sands, Soils and Foundations, 2002, 42, No. 2, 71-82.CrossrefGoogle Scholar

  • [19] MATSUOKA H., Dilatancy characteristics of soil, Soils & Foundations, 1974, Vol. 14, No. 3, 13-24.Google Scholar

  • [20] MCDOWELL G.R., A simple non-associated flow model for sand, Granular Matter, 2002, 4, No. 2, 65-69.Google Scholar

  • [21] NOVA R., A constitutive model for soil under monotonic and cyclic loading, [in:] G.N. Pande, O.C. Zienkiewicz (eds.), Soil Mechanics: Transient and Cyclic Loads, John Wiley and Sons, New York, 1982, 343-373.Google Scholar

  • [22] ODA M., The mechanism of fabric changes during compressional deformation of sand, Soils and Foundations, 1972, 12, No. 2, 1-18.CrossrefGoogle Scholar

  • [23] ODA M., KAZAMA H., Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils, Geotechnique, 1993, 48, No. 4, 465-481.CrossrefGoogle Scholar

  • [24] ROSCOE K.H., BURLAND I.B., On the generalised stressstrain behaviour of wet clay, [in:] Engineering Plasticity, J. Heyman and F.A. Leckie (eds.), 1968, 535-609.Google Scholar

  • [25] ROSCOE K.H., SCHOFIELD A.N., WROTH C.P., On the yielding of soils, Geotechnique, 1958, 8, No. 1, 22-53.CrossrefWeb of ScienceGoogle Scholar

  • [26] ROWE P.W., The stress-dilatancy relation for static equilibrium of an assembly of particles in contact, Proc. Roy. Soc., London, A269, 1962, 500-527.Google Scholar

  • [27] SCHOFIELD A., WROTH C.P., Critical State Soil Mechanics, McGraw-Hill, New York, 1968.Google Scholar

  • [28] TATSUOKA F., Stress-dilatancy relations of anisotropic sands in three dimensional stress condition, Soils and Foundations, 1976, Vol. 16, No. 2, 1-18.CrossrefGoogle Scholar

  • [29] TATSUOKA F., Stress-strain behaviour of an idealized anisotropic granular material, Soils and Foundations, 1980, Vol. 20, No. 3, 75-90.CrossrefGoogle Scholar

  • [30] TATSUOKA F., SIDDIQUEE M.S.A., PARK CH.-S., SAKAMOTO M., ABE F., Modelling stress-strain relations of sand, Soils and Foundations, 1993, Vol. 33, No. 2, 60-81.CrossrefGoogle Scholar

  • [31] TATSUOKA F., Laboratory stress-strain tests for developments in geomechanical engineering research and practice, Int. Symposium on Deformation Characteristics of Geomaterials, Seoul, Korea, 2011.Google Scholar

  • [32] TAYLOR D., Fundamentals of Soil Mechanics, John Wiley & Sons, New York, 1948.Google Scholar

  • [33] WANATOWSKI D., Strain softening and instability of sand. Experimental study under plane-strain conditions, VDM Verlag, 2009.Google Scholar

About the article

Published Online: 2017-02-08

Published in Print: 2016-12-01

Citation Information: Studia Geotechnica et Mechanica, Volume 38, Issue 4, Pages 51–57, ISSN (Online) 2083-831X, DOI: https://doi.org/10.1515/sgem-2016-0030.

Export Citation

© by Zenon Szypcio. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Zenon Szypcio
IOP Conference Series: Earth and Environmental Science, 2017, Volume 95, Page 022046
Katarzyna Dolzyk-Szypcio
IOP Conference Series: Earth and Environmental Science, 2017, Volume 95, Page 022045

Comments (0)

Please log in or register to comment.
Log in