Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studia Geotechnica et Mechanica

The Journal of Wroclaw University of Technology

4 Issues per year

Open Access
Online
ISSN
2083-831X
See all formats and pricing
More options …

Stress-Dilatancy for Soils. Part II: Experimental Validation for Triaxial Tests

Zenon Szypcio
Published Online: 2017-02-08 | DOI: https://doi.org/10.1515/sgem-2016-0031

Abstract

Different forms of the stress-dilatancy relations obtained based on the frictional theory for the triaxial condition are presented. The analysed test data show that the shear resistance of many soils is purely frictional. The angle Φ0 represents the resistance of the soil as a combined effect of sliding and particle rolling on the macro-scale during shear at the critical frictional state. The stress-plastic dilatancy relations differ not only for triaxial compression and extension but also for drained and undrained conditions. The experiment investigated shows the correctness of the frictional state theory in the triaxial condition.

Keywords: soil mechanics; stress-dilatancy; triaxial test

References

  • [1] BARDEN L., KHAYATT A., Incremental strain rate ratios and strength of sand in the triaxial test, Geotechnique, 1966, 16, No. 4, 338-357.Google Scholar

  • [2] BARDET I.P., PROUBET J., A numerical investigation of the structure of persistent shear bands in granular media, Geotechnique, 1991, 41, No. 4, 599-613.Google Scholar

  • [3] BEEN K., JEFFERIES M., Stress-dilatancy in very loose sand, Canadian Geotechnical Journal, 2004, 41, 972-989.Google Scholar

  • [4] BISHOP A.W., Sixth Rankine Lecture. Strength of soils as engineering materials, Geotechnique, 1966, 16, No. 2, 91-128.Google Scholar

  • [5] BOLTON M.D., The strength and dilatancy of sands, Geotechnique, 1986, 36, No. 1, 65-78.Google Scholar

  • [6] COOP M.R., WILSON S.M., Behaviour of Hydrocarbon Reservoir Sands and Sandstones, Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129, No. 11, 1010-1019.Google Scholar

  • [7] CORNFORTH D.H., Some experiments on the influence of strain conditions on the strength of sand, Geotechnique, 1864, 36, No. 1, 65-78.Google Scholar

  • [8] COTECCHIA F., CHANDLER R.J., The influence of structure on the pre-failure behaviour of a natural clay, Geotechnique, 1997, 47, No. 3. 523-544.Google Scholar

  • [9] COTECCHIA F., CHANDLER R.J., A general framework for the mechanical behaviour of clays, Geotechnique, 2000, 50, No. 4, 431-447.Google Scholar

  • [10] CRESSWELL A., POWRIE W., Triaxial tests on an unbonded locked sand, Geotechnique, 2004, 54, No. 2, 107-115.Google Scholar

  • [11] CUCCOVILLO T., COOP M.R., On the mechanics of structured sands, Geotechnique, 1999, 49, No. 6, 741-760.Google Scholar

  • [12] FEARON R., The behaviour of structurally complex clay from Italian landslide, PhD Thesis. City University London, UK, 1998.Google Scholar

  • [13] FEARON R.E., COOP M.R., Reconstitution: what makes an appropriate reference material? Geotechnique, 2000, 50, No. 4, 471-477.Google Scholar

  • [14] GREEN G.E., READES D.W., Boundary conditions, anisotropy and sample shape effects on the stress-strain behaviour of sand in triaxial compression and plane strain, Geotechnique, 1975, 25, No. 2, 333-356.Google Scholar

  • [15] JEFFERIES M.G., Nor-Sand: a simple critical state model for sand, Geotechnique, 1993, 43, No. 1, 91-103.Google Scholar

  • [16] JEFFERIES M.G., Plastic work and isotropic softening in unloading, Geotechnique, 1997, 47, No. 5, 1037-1042.Google Scholar

  • [17] JEFFERIES M.G., SHUTTLE D.A., Dilatancy in general Cambridge- type model, Geotechnique, 2002, 52, No. 9, 625-638.Google Scholar

  • [18] LI X.S., DAFALIAS Y.F., Dilatancy for cohesionless soils, Geotechnique, 2000, 50, No. 4, 449-460.Google Scholar

  • [19] MANZARI M.T., DAFALIAS Y.F., A critical state two-surface plasticity model for sands, Geotechnique, 1997, 47, No. 2, 255-272.Google Scholar

  • [20] NOVA R., A constitutive model under monotonic and cyclic loading, [in:] Soil mechanics-transient and cyclic loads, G. Pande, O.C. Zienkiewicz (eds.), John Wiley & Sons, Ltd., New York, 1982, 343-373.Google Scholar

  • [21] ODA M., KAZAMA H., Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils, Geotechnique, 1998, 48, No. 4, 465-481.Google Scholar

  • [22] ODA M., KONISHI J., NEMAT-NASSER S., Experimental micromechanical evaluation of strength of granular materials: effect of particle rolling, Mech. Mater., 1982, 1, 267-283.Google Scholar

  • [23] ROSCOE K.H., BURLAND J.B., On the generalized stressstrain behaviour of ‘wet’ clay, [in:] Engineering plasticity, J. Heyman, F.A. Leckie (eds.), Cambridge University Press, London, UK, 1968, 535-609.Google Scholar

  • [24] ROSCOE K.H., SCHOFIELD A.N., THURAIRAJAH A., Yielding of clays in states wetter than critical, Geotechnique, 1963, 13, No. 2, 211-240.Google Scholar

  • [25] ROWE P.W., The stress-dilatancy relation for static equilibrium of an assembly of particles in contact, Proc. Roy. Soc., Ser. A, 1962, 269, 500-527.Google Scholar

  • [26] SCHOFIELD A., WROTH C.P., Critical state soil mechanics, McGraw-Hill, London, UK, 1968.Google Scholar

  • [27] SKINNER A.E., A note on the influence of inter-particle friction on the shearing strength of a random assembly of spherical particles, Geotechnique, 1969, 19, 150-157.Google Scholar

  • [28] SZYPCIO Z., Stress-dilatancy for soils. Part I: The frictional state theory, Studia Geotechnica et Mechanica, 2016, Vol. 38, No. 4, 51-57.Google Scholar

  • [29] VENTOURAS K., Engineering behaviour of Thanet sand, PhD Thesis. University of London, UK, 2005.Google Scholar

  • [30] VENTOURAS K., COOP M.R., On the behaviour of Thanet Sand: an example of an uncemented natural sand, Geotechnique, 2009, 59, No. 9, 727-738.Google Scholar

  • [31] WAN R., GUO P., Effect of microstructure on undrained behaviour of sands, Can. Geotech. J., 2001, 38, 16-28.Google Scholar

  • [32] WAN R., GUO P., AL-MAMUN M., Behaviour of granular material in relation to their fabric dependencies, Soils and Foundations, 2005, 45, No. 2, 77-86.Google Scholar

  • [33] WOOD D.M., Soil behaviour and critical state soil mechanics, Cambridge University Press. Cambridge, 1990.Google Scholar

About the article

Published Online: 2017-02-08

Published in Print: 2016-12-01


Citation Information: Studia Geotechnica et Mechanica, ISSN (Online) 2083-831X, DOI: https://doi.org/10.1515/sgem-2016-0031.

Export Citation

© by Zenon Szypcio. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in