Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annals of Warsaw University of Life Sciences – SGGW. Land Reclamation

The Journal of Warsaw University of Life Sciences

4 Issues per year

Open Access
Online
ISSN
2081-9617
See all formats and pricing
More options …

Effective microorganisms impact on photosynthetic activity of Arabidopsis plant grown under salinity stress conditions

Hazem M. Kalaji / Magdalena D. Cetner / Izabela A. Samborska / Izabela Lukasik / Abdallah Oukarroum
  • Department of Chemistry and Biochemistry, University of Quebec in Montreal, C.P. 8888, Succ. Centre-Ville, 8 Montreal, Quebec, H3C 3P8, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Szymon Rusinowski / Stefan Pietkiewicz / Michał Świątek / Piotr Dąbrowski
Published Online: 2016-08-04 | DOI: https://doi.org/10.1515/sggw-2016-0012

Abstract

Effective microorganisms impact on photosynthetic activity of Arabidopsis plant grown under salinity stress conditions. Salinity is one of the main abiotic stressors which affects plant growth through various physiological processes such as photosynthesis. The aim of this work is to study the impact of salinity stress on Arabidopsis plants by evaluating plant growth rate and photosynthetic activity, while investigating the influence of effective microorganisms (EMs) with the objective to determine if EMs could alleviate the induced stress affiliated with salinity. Results showed that salinity negatively affects photosynthesis efficiency in Arabidopsis plants based on the data obtained from the measured chlorophyll fluorescence parameters. Additionally, application of EMs enhanced plant tolerance to counteract the induced stress. Effective microorganisms concentration of 10 mL/L suggested to bring about the best results. This work advocates, that quantum efficiency of photosystem II (PSII) is a reliable indicator for tolerance in Arabidopsis plants to salinity stress, the impact of which may be softened by the EMs.

Keywords: photosystem II; salt stress; tolerance; photosynthetic efficiency; effective microorganisms

References

  • ASHRAF M., HASNAIN S., BERGE O., MAHMOOD T. 2004: Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology and Fertility of Soils 40 (3), 157-162.Google Scholar

  • BAKER N.R. 1991: A possible role for photosystem II in environmental perturbation of photosynthesis. Physiologia Plantarum 81, 563-570.Google Scholar

  • BAKER N.R., ROSENQVIST E. 2004: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55 (403), 1607-1621.CrossrefGoogle Scholar

  • BOWEN G.D., ROVIRA A.D. 1966: Microbial factor in short-term uptake studies with plant roots. Nature 211, 655-666.Google Scholar

  • BOYER J.S. 1982: Plant productivity and environment. Science 218, 443-448.Google Scholar

  • BRESTIC M., ZIVCAK M., OLSOVSKA K., KALAJI M.H., SHAO H., HAKEEM K.R. 2013: Heat Signalling and Stress responses in photosynthesis. In: K. Rehman Hakeem, R. Rehman, I. Tahir (Eds). Plant signalling: Understanding the molecular cross-talk. Springer Verlag.Google Scholar

  • BRESTIC M., ZIVCAK M. 2013: PSII Fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. In: G.R. Rout, B.A. Das (Eds). Molecular Stress Physiology of Plants, 87-131.Google Scholar

  • CENDRERO MATEO M., CARMO-SILVA A., SALVUCCI M., MORAN S.M., HERNANDEZ M. 2012. Steady-state chlorophyll fluorescence (Fs) as a tool to monitor plant heat and drought stress. American Geophysical Union, Fall Meeting 2012.Google Scholar

  • BROWN M. 1974: Seed and root bacterization. Ann. Rev. Phytopath. 12, 181-197.CrossrefGoogle Scholar

  • DĄBROWSKI P., PAWLUŚKIEWICZ B., BACZEWSKA A.H., OGLĘCKI P., KA LAJI H. 2015: Chlorophyll a fluorescence of perennial ryegrass (Lolium perenne L.) varieties under long term exposure to shade. Zemdirbyste-Agriculture 102 (3), 305-312.CrossrefGoogle Scholar

  • FLEXAS J., ESCALONA J.M., EVAIN S., GULIAS J., MOYA I., OSMOND B.C., MEDRANO H. 2002: Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiologia Plantarum 114, 231-240.Google Scholar

  • GOLTSEV V., ZAHARIEVA I., CHERNEV P., KOUZMANOVA M., KALAJI H.M., YORDANOV I., KRASTEVA V., ALEXANDROV V., STEFANOV D., ALLAKHVERDIEV S.I., STRASSER R.J. 2012: Drought-induced modifications of photosynthetic electron transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation. Biochimica et. Biophysica Acta 1817, 1490-1498.Google Scholar

  • GROVER M., ALI S.Z., SANDHYA V., RASUL A., VENKATESWARLU B. 2011: Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology 27, 1231-1240.Google Scholar

  • HIGA T., PARR J.F. 1994: Beneficial and effective microorganisms for a sustainable agriculture and environment. INFRC (International Nature Farming Research Center), Atami.Google Scholar

  • HIGA T., PARR J. 1995: Beneficial and effective microorganisms in a sustainable agriculture and environment. Technology Trends 9, 1-5.Google Scholar

  • JAVAID A. 2006: Foliar application of effective microorganisms on pea as an alternative fertilizer. Agron. Sustain. Dev. 26, 257-262.CrossrefGoogle Scholar

  • KACZMAREK Z., OWCZARZAK W., MRUGALSKA L., GRZELAK M. 2007: The influence of effective microorganisms for some of physical and water properties on arable-humus horizons of mineral soils. Journal of Research and Applications in Agricultural Engineering 52 (3), 73-77.Google Scholar

  • KACZMAREK Z., WOLNA-MARUWKA A., JAKUBUS M. 2008: Changes of the number of selected microorganism groups and enzymatic activity in the soil inoculated with effective microorganisms (EM). Journal of Research and Applications in Agricultural Engineering 53 (3), 122-127.Google Scholar

  • KALAJI H.M., BOSA K., KOŚCIELNIAK J., ŻUK-GOŁASZEWSKA K. 2011: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ. Exp. Bot. 73, 64-72.Web of ScienceCrossrefGoogle Scholar

  • KALAJI H.M., ŁOBODA T. 2007: Photosystem II of barley seedlings under cadmium and lead stress. Plant Soil Environ. 53, 511-516.Google Scholar

  • KALAJI M.H., JAJOO A., OUKARROUM A., BRESTIC M., ZIVCAK M., SAMBORSKA I.A., CETNER M.D., ŁUKASIK I., GOLTSEV V., LADLE R.J., DĄBROWSKI P., AHMAD P. 2014a: The Use of Chlorophyll Fluorescence Kinetics Analysis to Study the Performance of Photosynthetic Machinery in Plants. In: P. Ahmad (Ed.). Emerging Technologies and Management of Crop Stress Tolerance. Vol. 2. DOI: http://dx.doi.org/10.1016/B978-0-12-800875-1.00015-6.CrossrefGoogle Scholar

  • KALAJI M.H., OUKARROUM A., ALEXANDROV V., KOUZMANOVA M., BRESTIC M., ZIVCAK M., SAMBORSKA I.A., CETNER M.D., ALLAKHVERDIEV S.I., GOLTSEV V. 2014b: Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol. Bioch. 81, 16-25.CrossrefWeb of ScienceGoogle Scholar

  • KALAJI M.H., PIETKIEWICZ S. 1993: Salinity effects on plant growth and other physiological processes. Acta Physiol. Plant. 143, 89-124.Google Scholar

  • KALAJI M.H., RUTKOWSKA A. 2003: Short-term response of photosynthetic machinery of maize seedlings to salt stress. Acta Physiol. Plant. 25 (3), 80, supplement.Google Scholar

  • KALAJI M.H., SCHANSKER G., LADLE R.J., GOLTSEV V., BOSA K., ALLAKHVERDIEV S.I., BRESTIC M., BUSSOTTI F., CALATAYUD A., DĄBROWSKI P., ELSHEERY N.I., FERRONI L., GUIDI L., HOGEWONING S.W., JAJOO A., MISRA A.N., NEBAUER S.G., PANCALDI S., PENELLA C., POLI D.B., POLLASTRINI M., ROMANOWSKA- -DUDA Z.B., RUTKOWSKA B., SERODI J., SURESH K., SZULC W., TAMBUSSI E., YANNICCARI M., ZIVCAK M. 2014c: Frequently Asked Questions about in vivo chlorophyll fluorescence: practical issues. Photosynth. Res. 122, 121-158.Web of ScienceCrossrefGoogle Scholar

  • KRAUSE G.H., WEIS E. 1991: Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Phys. 42, 313-349.CrossrefGoogle Scholar

  • MARSCHNER H. 1995: Mineral Nutrition of Higher Plants. Academic Press, London.Google Scholar

  • MEGALI L., GLAUSER G., RASMANN S. 2013: Fertilization with beneficial microorganisms decreases tomato defenses against insect pests. Agron. Sustain. Dev. 34 (3), 649-656.CrossrefWeb of ScienceGoogle Scholar

  • MUNNS R. 1993: Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell Environ. 16, 15-24.CrossrefGoogle Scholar

  • MUNNS R. 2002: Comparative physiology of salt and water stress. Plant, Cell Environ. 25, 239-250.CrossrefGoogle Scholar

  • OKORSKI A., MAJCHRZAK B. 2007: Fungi isolated from soil before the seeding and efter harvest of pea (Pisum sativum L.) after application of bio-control product EM 1. Acta Botanica 60 (1), 113-121.Google Scholar

  • PARIDA A.K., DAS A.B. 2005: Salt tolerance and salinity effects on plants: a review. Ecotox. Environ. Safe. 60, 324-349.CrossrefGoogle Scholar

  • TALAAT N.B. 2014: Effective microorganisms enhance the scavenging capacity of the ascorbate-glutathione cycle in common bean (Phaseolus vulgaris L.) plants grown in salty soils. Plant Physiology and Biochemistry 80, 136-143.Web of ScienceGoogle Scholar

  • TALAAT N.B. 2015: Effective microorganisms modify protein and polyamine pools in common bean (Phaseolus vulgaris L.) plants grown under saline conditions. Scientia Horticulturae 190, 1-10.Web of ScienceGoogle Scholar

  • STĘPIEŃ W., GÓRSKA E.B., PIETKIEWICZ S., KALAJI M.H. 2014: Long- -term mineral fertilization impact on chemical and microbiological properties of soil and Miscanthus ×giganteus yield. Plant Soil Environ. 60 (3), 117-122.Google Scholar

  • VALARINI P.J., CRUZ DÍAZ ALVAREZ M., GASCÓ J.M., GUERRERO F., TOKESHI H. 2002: Integrated evaluation of soil quality after the incorporation of organic matter and microorganisms. Brazilian Journal of Microbiology 33 (1).CrossrefGoogle Scholar

  • YAMADA K., XU H.L. 2001. Properties and Applications of an Organic Fertilizer Inoculated with Effective Microorganisms. Journal of Crop Production 3 (1), 255- -268. Google Scholar

About the article

Received: 2016-04-01

Published Online: 2016-08-04

Published in Print: 2016-06-01


Citation Information: Annals of Warsaw University of Life Sciences – SGGW. Land Reclamation, ISSN (Online) 2081-9617, DOI: https://doi.org/10.1515/sggw-2016-0012.

Export Citation

© by Piotr Dąbrowski. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Fabrizio Araniti, Monica Scognamiglio, Angela Chambery, Rosita Russo, Assunta Esposito, Brigida D’Abrosca, Antonio Fiorentino, Antonio Lupini, Francesco Sunseri, and Maria Rosa Abenavoli
Journal of Plant Physiology, 2017, Volume 213, Page 30

Comments (0)

Please log in or register to comment.
Log in