Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Annals of Warsaw University of Life Sciences – SGGW. Land Reclamation

The Journal of Warsaw University of Life Sciences

4 Issues per year

Open Access
See all formats and pricing
In This Section

Effective microorganisms impact on photosynthetic activity of Arabidopsis plant grown under salinity stress conditions

Hazem M. Kalaji
  • Department of Plant Physiology, Warsaw University of Life Sciences, Poland
/ Magdalena D. Cetner
  • Department of Plant Physiology, Warsaw University of Life Sciences, Poland
/ Izabela A. Samborska
  • Department of Plant Physiology, Warsaw University of Life Sciences, Poland
/ Izabela Lukasik
  • Independent researcher, Racławicka 106, 02-634 Warszawa, Poland
/ Abdallah Oukarroum
  • Department of Chemistry and Biochemistry, University of Quebec in Montreal, C.P. 8888, Succ. Centre-Ville, 8 Montreal, Quebec, H3C 3P8, Canada
/ Szymon Rusinowski
  • Institute for Ecology of Industrial Areas, Poland
/ Stefan Pietkiewicz
  • Department of Plant Physiology, Warsaw University of Life Sciences, Poland
/ Michał Świątek
  • Microbiological Institute of Technology in Turku (ITM), Turek, Poland
/ Piotr Dąbrowski
  • Corresponding author
  • Department of Environmental Improvement, Warsaw University of Life Sciences – SGGW, Poland
  • Email:
Published Online: 2016-08-04 | DOI: https://doi.org/10.1515/sggw-2016-0012


Effective microorganisms impact on photosynthetic activity of Arabidopsis plant grown under salinity stress conditions. Salinity is one of the main abiotic stressors which affects plant growth through various physiological processes such as photosynthesis. The aim of this work is to study the impact of salinity stress on Arabidopsis plants by evaluating plant growth rate and photosynthetic activity, while investigating the influence of effective microorganisms (EMs) with the objective to determine if EMs could alleviate the induced stress affiliated with salinity. Results showed that salinity negatively affects photosynthesis efficiency in Arabidopsis plants based on the data obtained from the measured chlorophyll fluorescence parameters. Additionally, application of EMs enhanced plant tolerance to counteract the induced stress. Effective microorganisms concentration of 10 mL/L suggested to bring about the best results. This work advocates, that quantum efficiency of photosystem II (PSII) is a reliable indicator for tolerance in Arabidopsis plants to salinity stress, the impact of which may be softened by the EMs.

Keywords: photosystem II; salt stress; tolerance; photosynthetic efficiency; effective microorganisms


  • ASHRAF M., HASNAIN S., BERGE O., MAHMOOD T. 2004: Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology and Fertility of Soils 40 (3), 157-162.

  • BAKER N.R. 1991: A possible role for photosystem II in environmental perturbation of photosynthesis. Physiologia Plantarum 81, 563-570.

  • BAKER N.R., ROSENQVIST E. 2004: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55 (403), 1607-1621. [Crossref]

  • BOWEN G.D., ROVIRA A.D. 1966: Microbial factor in short-term uptake studies with plant roots. Nature 211, 655-666.

  • BOYER J.S. 1982: Plant productivity and environment. Science 218, 443-448.

  • BRESTIC M., ZIVCAK M., OLSOVSKA K., KALAJI M.H., SHAO H., HAKEEM K.R. 2013: Heat Signalling and Stress responses in photosynthesis. In: K. Rehman Hakeem, R. Rehman, I. Tahir (Eds). Plant signalling: Understanding the molecular cross-talk. Springer Verlag.

  • BRESTIC M., ZIVCAK M. 2013: PSII Fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. In: G.R. Rout, B.A. Das (Eds). Molecular Stress Physiology of Plants, 87-131.

  • CENDRERO MATEO M., CARMO-SILVA A., SALVUCCI M., MORAN S.M., HERNANDEZ M. 2012. Steady-state chlorophyll fluorescence (Fs) as a tool to monitor plant heat and drought stress. American Geophysical Union, Fall Meeting 2012.

  • BROWN M. 1974: Seed and root bacterization. Ann. Rev. Phytopath. 12, 181-197. [Crossref]

  • DĄBROWSKI P., PAWLUŚKIEWICZ B., BACZEWSKA A.H., OGLĘCKI P., KA LAJI H. 2015: Chlorophyll a fluorescence of perennial ryegrass (Lolium perenne L.) varieties under long term exposure to shade. Zemdirbyste-Agriculture 102 (3), 305-312. [Crossref]

  • FLEXAS J., ESCALONA J.M., EVAIN S., GULIAS J., MOYA I., OSMOND B.C., MEDRANO H. 2002: Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiologia Plantarum 114, 231-240.

  • GOLTSEV V., ZAHARIEVA I., CHERNEV P., KOUZMANOVA M., KALAJI H.M., YORDANOV I., KRASTEVA V., ALEXANDROV V., STEFANOV D., ALLAKHVERDIEV S.I., STRASSER R.J. 2012: Drought-induced modifications of photosynthetic electron transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation. Biochimica et. Biophysica Acta 1817, 1490-1498.

  • GROVER M., ALI S.Z., SANDHYA V., RASUL A., VENKATESWARLU B. 2011: Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology 27, 1231-1240.

  • HIGA T., PARR J.F. 1994: Beneficial and effective microorganisms for a sustainable agriculture and environment. INFRC (International Nature Farming Research Center), Atami.

  • HIGA T., PARR J. 1995: Beneficial and effective microorganisms in a sustainable agriculture and environment. Technology Trends 9, 1-5.

  • JAVAID A. 2006: Foliar application of effective microorganisms on pea as an alternative fertilizer. Agron. Sustain. Dev. 26, 257-262. [Crossref]

  • KACZMAREK Z., OWCZARZAK W., MRUGALSKA L., GRZELAK M. 2007: The influence of effective microorganisms for some of physical and water properties on arable-humus horizons of mineral soils. Journal of Research and Applications in Agricultural Engineering 52 (3), 73-77.

  • KACZMAREK Z., WOLNA-MARUWKA A., JAKUBUS M. 2008: Changes of the number of selected microorganism groups and enzymatic activity in the soil inoculated with effective microorganisms (EM). Journal of Research and Applications in Agricultural Engineering 53 (3), 122-127.

  • KALAJI H.M., BOSA K., KOŚCIELNIAK J., ŻUK-GOŁASZEWSKA K. 2011: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ. Exp. Bot. 73, 64-72. [Web of Science] [Crossref]

  • KALAJI H.M., ŁOBODA T. 2007: Photosystem II of barley seedlings under cadmium and lead stress. Plant Soil Environ. 53, 511-516.

  • KALAJI M.H., JAJOO A., OUKARROUM A., BRESTIC M., ZIVCAK M., SAMBORSKA I.A., CETNER M.D., ŁUKASIK I., GOLTSEV V., LADLE R.J., DĄBROWSKI P., AHMAD P. 2014a: The Use of Chlorophyll Fluorescence Kinetics Analysis to Study the Performance of Photosynthetic Machinery in Plants. In: P. Ahmad (Ed.). Emerging Technologies and Management of Crop Stress Tolerance. Vol. 2. DOI: http://dx.doi.org/10.1016/B978-0-12-800875-1.00015-6. [Crossref]

  • KALAJI M.H., OUKARROUM A., ALEXANDROV V., KOUZMANOVA M., BRESTIC M., ZIVCAK M., SAMBORSKA I.A., CETNER M.D., ALLAKHVERDIEV S.I., GOLTSEV V. 2014b: Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol. Bioch. 81, 16-25. [Crossref] [Web of Science]

  • KALAJI M.H., PIETKIEWICZ S. 1993: Salinity effects on plant growth and other physiological processes. Acta Physiol. Plant. 143, 89-124.

  • KALAJI M.H., RUTKOWSKA A. 2003: Short-term response of photosynthetic machinery of maize seedlings to salt stress. Acta Physiol. Plant. 25 (3), 80, supplement.

  • KALAJI M.H., SCHANSKER G., LADLE R.J., GOLTSEV V., BOSA K., ALLAKHVERDIEV S.I., BRESTIC M., BUSSOTTI F., CALATAYUD A., DĄBROWSKI P., ELSHEERY N.I., FERRONI L., GUIDI L., HOGEWONING S.W., JAJOO A., MISRA A.N., NEBAUER S.G., PANCALDI S., PENELLA C., POLI D.B., POLLASTRINI M., ROMANOWSKA- -DUDA Z.B., RUTKOWSKA B., SERODI J., SURESH K., SZULC W., TAMBUSSI E., YANNICCARI M., ZIVCAK M. 2014c: Frequently Asked Questions about in vivo chlorophyll fluorescence: practical issues. Photosynth. Res. 122, 121-158. [Web of Science] [Crossref]

  • KRAUSE G.H., WEIS E. 1991: Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Phys. 42, 313-349. [Crossref]

  • MARSCHNER H. 1995: Mineral Nutrition of Higher Plants. Academic Press, London.

  • MEGALI L., GLAUSER G., RASMANN S. 2013: Fertilization with beneficial microorganisms decreases tomato defenses against insect pests. Agron. Sustain. Dev. 34 (3), 649-656. [Crossref] [Web of Science]

  • MUNNS R. 1993: Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell Environ. 16, 15-24. [Crossref]

  • MUNNS R. 2002: Comparative physiology of salt and water stress. Plant, Cell Environ. 25, 239-250. [Crossref]

  • OKORSKI A., MAJCHRZAK B. 2007: Fungi isolated from soil before the seeding and efter harvest of pea (Pisum sativum L.) after application of bio-control product EM 1. Acta Botanica 60 (1), 113-121.

  • PARIDA A.K., DAS A.B. 2005: Salt tolerance and salinity effects on plants: a review. Ecotox. Environ. Safe. 60, 324-349. [Crossref]

  • TALAAT N.B. 2014: Effective microorganisms enhance the scavenging capacity of the ascorbate-glutathione cycle in common bean (Phaseolus vulgaris L.) plants grown in salty soils. Plant Physiology and Biochemistry 80, 136-143. [Web of Science]

  • TALAAT N.B. 2015: Effective microorganisms modify protein and polyamine pools in common bean (Phaseolus vulgaris L.) plants grown under saline conditions. Scientia Horticulturae 190, 1-10. [Web of Science]

  • STĘPIEŃ W., GÓRSKA E.B., PIETKIEWICZ S., KALAJI M.H. 2014: Long- -term mineral fertilization impact on chemical and microbiological properties of soil and Miscanthus ×giganteus yield. Plant Soil Environ. 60 (3), 117-122.

  • VALARINI P.J., CRUZ DÍAZ ALVAREZ M., GASCÓ J.M., GUERRERO F., TOKESHI H. 2002: Integrated evaluation of soil quality after the incorporation of organic matter and microorganisms. Brazilian Journal of Microbiology 33 (1). [Crossref]

  • YAMADA K., XU H.L. 2001. Properties and Applications of an Organic Fertilizer Inoculated with Effective Microorganisms. Journal of Crop Production 3 (1), 255- -268.

About the article

Received: 2016-04-01

Published Online: 2016-08-04

Published in Print: 2016-06-01

Citation Information: Annals of Warsaw University of Life Sciences – SGGW. Land Reclamation, ISSN (Online) 2081-9617, DOI: https://doi.org/10.1515/sggw-2016-0012. Export Citation

© by Piotr Dąbrowski. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. (CC BY-NC-ND 4.0)

Comments (0)

Please log in or register to comment.
Log in