Jump to ContentJump to Main Navigation
Show Summary Details
More options …
New at De Gruyter

Scandinavian Journal of Pain

Official Journal of the Scandinavian Association for the Study of Pain

Editor-in-Chief: Breivik, Harald

4 Issues per year


CiteScore 2017: 0.84

SCImago Journal Rank (SJR) 2017: 0.401
Source Normalized Impact per Paper (SNIP) 2017: 0.452

Online
ISSN
1877-8879
See all formats and pricing
More options …
Volume 2, Issue 3

Review of neuroimaging studies related to pain modulation

Lone Knudsen
  • Corresponding author
  • Danish Pain Research Center, Aarhus University Hospital Nørrebrogade 44, Building 1A, 8000 Aarhus C, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gitte Laue Petersen / Kathrine Næsted Nørskov / Lene Vase / Nanna Finnerup
  • Danish Pain Research Center, Aarhus University Hospital Nørrebrogade 44, Building 1A, 8000 Aarhus C, Denmark
  • Center for Functionally Integrative Neuroscience, MindLab, Aarhus University Hospital, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Troels Staehelin Jensen
  • Danish Pain Research Center, Aarhus University Hospital Nørrebrogade 44, Building 1A, 8000 Aarhus C, Denmark
  • Center for Functionally Integrative Neuroscience, MindLab, Aarhus University Hospital, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Svensson
  • Center for Functionally Integrative Neuroscience, MindLab, Aarhus University Hospital, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark
  • Department of Clinical Oral Physiology, School of Dentistry, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-07-01 | DOI: https://doi.org/10.1016/j.sjpain.2011.05.005

Abstract

Background and purpose: A noxious stimulus does not necessarily cause pain. Nociceptive signals arising from a noxious stimulus are subject to modulation via endogenous inhibitory and facilitatory mechanisms as they travel from the periphery to the dorsal horn or brainstem and on to higher brain sites. Research on the neural structures underlying endogenous pain modulation has largely been restricted to animal research due to the invasiveness of such studies (e.g., spinal cord transection, brain lesioning, brain site stimulation). Neuroimaging techniques (e.g., magnetoencephalography (MEG), positron emission tomography (PET) and functional magnetic resonance imaging (fMRI)) provide non-invasive means to study neural structures in humans. The aim is to provide a narrative review of neuroimaging studies related to human pain control mechanisms.

Methods: The approach taken is to summarise specific pain modulation mechanisms within the somatosensory (diffuse noxious inhibitory controls, acupuncture, movement), affective (depression, anxiety, catastrophizing, stress) and cognitive (anticipation/placebo, attention/distraction, hypnosis)domains with emphasis on the contribution of neuroimaging studies.

Results and conclusions: Findings from imaging studies are complex reflecting activation or deactivation in numerous brain areas. Despite this, neuroimaging techniques have clarified supraspinal sites involved in a number of pain control mechanisms. The periaqueductal grey (PAG) is one area that has consistently been shown to be activated across the majority of pain mechanisms. Activity in the rostral ventromedial medulla known to relay descending modulation from the PAG, has also been observed both during acupuncture analgesia and anxiety-induced hyperalgesia. Other brain areas that appear to be involved in a number of mechanisms are the anterior cingulate cortex, prefrontal cortex, orbitofrontal cortex and nucleus accumbens, but their exact role is less clear.

Implications: Neuroimaging studies have provided essential information about the pain modulatory pathways under normal conditions, but much is still to be determined. Understanding the mechanisms of pain control is important for understanding the mechanisms that contribute to failed pain control in chronic pain. Applying fMRI outside the brain, such as in the trigeminal nucleus caudalis of the spinotrigeminal pathway and in the dorsal horn of the spinal cord, and coupling brain activity with activity at these sites may help improve our understanding of the function of brain sites and shed light on functional connectivity in the pain pathway.

© 2011 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

Keywords: Pain control mechanisms; Nociception; Neuroimaging; PET; fMRI; MEG

DOI of refers to article: 10.1016/j.sjpain.2011.05.007.

References

  • [1]

    Descartes R. Treatise of man. Cambridge, MA: Harvard University Press; 1972.Google Scholar

  • [2]

    DeLeo JA. Basic science of pain. J Bone Joint SurgAm2006;88(Suppl. 2):58-62.Google Scholar

  • [3]

    Drummond PD, Finch PM, Skipworth S, Blockey P. Pain increases during sympathetic arousal in patients with complex regional pain syndrome. Neurology 2001;57(7):1296-303.CrossrefPubMedGoogle Scholar

  • [4]

    Seifert F, Kiefer G, DeCol R, Schmelz M, Maihofner C. Differential endogenous pain modulation in complex-regional pain syndrome. Brain 2009;132(Pt.3):788-800.PubMedCrossrefGoogle Scholar

  • [5]

    Lautenbacher S, Rollman GB. Possible deficiencies of pain modulation in fibromyalgia. Clin J Pain 1997;13(3):189-96.PubMedCrossrefGoogle Scholar

  • [6]

    de Tommaso M. Laser-evoked potentials in primary headaches and cranial neuralgias. Expert Rev Neurother 2008;8(9):1339-45.CrossrefPubMedGoogle Scholar

  • [7]

    Seifert F, Maihofner C. Central mechanisms of experimental and chronic neuropathic pain: findings from functional imaging studies. Cell Mol Life Sci 2009;66(3):375-90.PubMedCrossrefGoogle Scholar

  • [8]

    Tracey I. Imaging pain. Br J Anaesth 2008;101(1):32-9.PubMedCrossrefGoogle Scholar

  • [9]

    Schweinhardt P, Bushnell MC. Pain imaging in health and disease-how far have we come? J Clin Invest 2010;120(11):3788-97.PubMedCrossrefGoogle Scholar

  • [10]

    Bushnell MC, Apkarian AV. Representation of pain in the brain. In: McMahon SB, Koltzenburg M, editors. Textbook of Pain. London: Churchill Livingstone; 2005. p. 107-24.Google Scholar

  • [11]

    Millan MJ. Descending control of pain. Prog Neurobiol 2002;66:355-474.Google Scholar

  • [12]

    Pertovaara A, Kemppainen P, Johansson G, Karonen SL. Ischemic pain nonsegmentally produces a predominant reduction of pain and thermal sensitivity in man: a selective role for endogenous opioids. Brain Res 1982;251(1):83-92.CrossrefGoogle Scholar

  • [13]

    Willer JC, Roby A, Le Bars D. Psychophysical and electrophysiological approaches to the pain-relieving effects of heterotopic nociceptive stimuli. Brain 1984;107:1095-112.Google Scholar

  • [14]

    Price DD, McHaffie JG. Effects of heterotopic conditioning stimuli on first and second pain: a psychophysical evaluation in humans. Pain 1988;34(3):245-52.CrossrefGoogle Scholar

  • [15]

    Bouhassira D, Danziger N, Attal N, Guirimand F. Comparison of the pain suppressive effects of clinical and experimental painful conditioning stimuli. Brain 2003;126(Pt. 5):1068-78.CrossrefPubMedGoogle Scholar

  • [16]

    Kosek E, Hansson P. Modulatory influence on somatosensory perception from vibration and heterotopic noxious conditioning stimulation (HNCS) in fibromyalgia patients and healthy subjects. Pain 1997;70(1):41-51.PubMedCrossrefGoogle Scholar

  • [17]

    Gibson W, Arendt-Nielsen L, Sessle BJ, Graven-Nielsen T. Glutamate and capsaicin-induced pain, hyperalgesia and modulatory interactions in human tendon tissue. Exp Brain Res 2009;194(2):173-82.CrossrefPubMedGoogle Scholar

  • [18]

    Knudsen L, Drummond PD. Cold-induced limb pain decreases sensitivity to pressure-pain sensations in the ipsilateral forehead. Eur J Pain 2009;13(10):1023-9.PubMedCrossrefGoogle Scholar

  • [19]

    Terkelsen AJ, Andersen OK, Hansen PO, Jensen TS. Effects of heterotopicand segmental counter-stimulation on the nociceptive withdrawal reflex in humans. Acta Physiol Scand 2001;172(3):211-7.CrossrefPubMedGoogle Scholar

  • [20]

    Morton CR, Maisch B, Zimmermann M. Diffuse noxious inhibitory controls of lumbar spinal neurons involve a supraspinal loop in the cat. Brain Res 1987;410(2):347-52.CrossrefGoogle Scholar

  • [21]

    Schouenborg J, Dickenson A. Effects of a distant noxious stimulation on A and C fibre-evoked flexion reflexes and neuronal activity in the dorsal horn of the rat. Brain Res 1985;328(1):23-32.CrossrefGoogle Scholar

  • [22]

    Le Bars D, Dickenson AH, Besson JM. Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain 1979;6(3):283-304.CrossrefPubMedGoogle Scholar

  • [23]

    Cadden SW, Villanueva L, Chitour D, Le Bars D. Depression of activities of dorsal horn convergent neurones by propriospinal mechanisms triggered by noxious inputs; comparison with diffuse noxious inhibitory controls (DNIC). Brain Res 1983;275(1):1-11.CrossrefPubMedGoogle Scholar

  • [24]

    Calvino B, Villanueva L, Le Bars D. The heterotopic effects of visceral pain: behavioural and electrophysiological approaches in the rat. Pain 1984;20(3):261-71.PubMedCrossrefGoogle Scholar

  • [25]

    Hu JW. Response properties of nociceptive and non-nociceptive neurons in the rat’s trigeminal subnucleus caudalis (medullary dorsal horn) related to cutaneous and deep craniofacial afferent stimulation and modulation by diffuse noxious inhibitory controls. Pain 1990;41(3):331-45.CrossrefPubMedGoogle Scholar

  • [26]

    Dickenson AH, Le Bars D, Besson JM. Diffuse noxious inhibitory controls (DNIC). Effects on trigeminal nucleus caudalis neurones in the rat. Brain Res 1980;200(2):293-305.Google Scholar

  • [27]

    Murase K, Kawakita K. Diffuse noxious inhibitory controls in anti-nociception produced by acupuncture and moxibustion on trigeminal caudalis neurons in rats. Jpn J Physiol 2000;50(1):133-40.CrossrefPubMedGoogle Scholar

  • [28]

    Le Bars D. The whole body receptive field of dorsal horn multireceptive neurones. Brain Res Rev 2002;40(1-3):29-44.CrossrefGoogle Scholar

  • [29]

    Le Bars D, Dickenson AH, Besson JM. Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications. Pain 1979;6:305-27.Google Scholar

  • [30]

    Bouhassira D, Villanueva L, Bing Z, le Bars D. Involvement of the subnucleus reticularis dorsalis in diffuse noxious inhibitory controls in the rat. Brain Res 1992;595(2):353-7.PubMedCrossrefGoogle Scholar

  • [31]

    Le Bars D, Villanueva L, Bouhassira D, Willer JC. Diffuse noxious inhibitory controls (DNIC) in animals and in man. Patol Fiziol Eksp Ter 1992;(4):55-65.PubMedGoogle Scholar

  • [32]

    Villanueva L, Le Bars D. The activation of bulbo-spinal controls by peripheral nociceptive inputs: diffuse noxious inhibitory controls. Biol Res 1995;28(1):113-25.PubMedGoogle Scholar

  • [33]

    Lapirot O, Chebbi R, Monconduit L, Artola A, Dallel R, Luccarini P. NK1 receptor-expressing spinoparabrachial neurons trigger diffuse noxious inhibitory controls through lateral parabrachial activation in the male rat. Pain 2009;142(3):245-54.PubMedCrossrefGoogle Scholar

  • [34]

    Dickenson AH, Rivot JP, Chaouch A, Besson JM, Le Bars D. Diffuse noxious inhibitory controls (DNIC) in the rat with or without pCPA pretreatment. Brain Res 1981;216(2):313-21.PubMedCrossrefGoogle Scholar

  • [35]

    De Broucker T, Cesaro P, Willer JC, Le Bars D. Diffuse noxious inhibitory controls in man. Involvement of the spinoreticular tract. Brain 1990;113:1223-34.Google Scholar

  • [36]

    Chitour D, Dickenson AH, Le Bars D. Pharmacological evidence for the involvement of serotonergic mechanisms in diffuse noxious inhibitory controls (DNIC). Brain Res 1982;236(2):329-37.PubMedCrossrefGoogle Scholar

  • [37]

    Le Bars D, Willer JC, De Broucker T. Morphine blocks descending pain inhibitory controls in humans. Pain 1992;48(1):13-20.PubMedCrossrefGoogle Scholar

  • [38]

    Willer JC, De Broucker T, Le Bars D. Encoding of nociceptive thermal stimuli by diffuse noxious inhibitory controls in humans. J Neurophysiol 1989;62(5):1028-38.CrossrefPubMedGoogle Scholar

  • [39]

    Potvin S, Larouche A, Normand E, de Souza JB, Gaumond I, Grignon S, Marchand S. DRD3 Ser9Gly polymorphism is related to thermal pain perception and modulation in chronic widespread pain patients and healthy controls. J Pain 2009;10(9):969-75.CrossrefPubMedGoogle Scholar

  • [40]

    Piche M, Arsenault M, Rainville P. Cerebral and cerebrospinal processes underlying counterirritation analgesia. J Neurosci 2009;29(45):14236-46.PubMedCrossrefGoogle Scholar

  • [41]

    Zubieta JK, Smith YR, Bueller JA, Xu Y, Kilbourn MR, Jewett DM, Meyer CR, Koeppe RA, Stohler CS. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 2001;293(5528):311-5.CrossrefPubMedGoogle Scholar

  • [42]

    Wilder-Smith CH, Schindler D, Lovblad K, Redmond SM, Nirkko A. Brain functional magnetic resonance imaging of rectal pain and activation of endogenous inhibitory mechanisms in irritable bowel syndrome patient subgroups and healthy controls. Gut 2004;53(11):1595-601.CrossrefPubMedGoogle Scholar

  • [43]

    Willer JC, Bouhassira D, Le Bars D. Neurophysiological bases of the counterirritation phenomenon: diffuse control inhibitors induced by nociceptive stimulation. Neurophysiol Clin 1999;29(5):379-400.CrossrefPubMedGoogle Scholar

  • [44]

    Dubner R, Ren K. Endogenous mechanisms of sensory modulation. Pain 1999;(Suppl. 6):S45-53.PubMedGoogle Scholar

  • [45]

    Sprenger C, Bingel U, Buchel C. Treating pain with pain: supraspinal mechanisms of endogenous analgesia elicited by heterotopic noxious conditioning stimulation. Pain 2011;152(2):428-39.PubMedCrossrefGoogle Scholar

  • [46]

    Butler RK, Finn DP. Stress-induced analgesia. Prog Neurobiol 2009;88(3):184-202.PubMedCrossrefGoogle Scholar

  • [47]

    Dunckley P, Aziz Q, Wise RG, Brooks J, Tracey I, Chang L. Attentional modulation of visceral and somatic pain. Neurogastroenterol Motil 2007;19(7):569-77.CrossrefPubMedGoogle Scholar

  • [48]

    Luo F, Wang JY. Modulation of central nociceptive coding by acupoint stimulation. Neurochem Res 2008;33(10):1950-5.PubMedCrossrefGoogle Scholar

  • [49]

    Kong J, Kaptchuk TJ, Polich G, Kirsch I, Vangel M, Zyloney C, Rosen B, Gollub R. Expectancy and treatment interactions: a dissociation between acupuncture analgesia and expectancy evoked placebo analgesia. Neuroimage 2009;45(3):940-9.PubMedCrossrefGoogle Scholar

  • [50]

    Borsook D, Becerra LR. Breaking down the barriers: fMRI applications in pain, analgesia and analgesics. Mol Pain 2006;2:30.PubMedGoogle Scholar

  • [51]

    Chung JM, Fang ZR, Hori Y, Lee KH, Willis WD. Prolonged inhibition of primate spinothalamic tract cells by peripheral nerve stimulation. Pain 1984;19(3):259-75.PubMedCrossrefGoogle Scholar

  • [52]

    Kawakita K, Funakoshi M. Suppression of the jaw-opening reflex by conditioning a-delta fiber stimulation and electroacupuncture in the rat. Exp Neurol 1982;78(2):461-5.CrossrefPubMedGoogle Scholar

  • [53]

    Leung A, Khadivi B, Duann JR, Cho ZH, Yaksh T. The effect of ting point (tendinomuscular meridians) electroacupuncture on thermal pain: a model for studying the neuronal mechanism of acupuncture analgesia. J Altern Complement Med 2005;11(4):653-61.CrossrefGoogle Scholar

  • [54]

    Pomeranz B, Paley D. Electroacupuncture hypalgesia is mediated by afferent nerve impulses: an electrophysiological study in mice. Exp Neurol 1979;66(2):398-402.CrossrefPubMedGoogle Scholar

  • [55]

    Carlsson C. Acupuncture mechanisms for clinically relevant longterm effects-reconsideration and a hypothesis. Acupunct Med 2002;20(2-3):82-99.CrossrefGoogle Scholar

  • [56]

    Bing Z, Villanueva L, Le Bars D. Acupuncture and diffuse noxious inhibitory controls: naloxone-reversible depression of activities of trigeminal convergent neurons. Neuroscience 1990;37(3):809-18.CrossrefPubMedGoogle Scholar

  • [57]

    Zhao Z. Neural mechanism underlying acupuncture analgesia. Prog Neurobiol 2008;85:355-75.Google Scholar

  • [58]

    Dhond RP, Kettner N, Napadow V. Neuroimaging acupuncture effects in the human brain. J Altern Complement Med 2007;13(6):603-16.PubMedCrossrefGoogle Scholar

  • [59]

    Price DD, Rafii A, Watkins LR, Buckingham B. A psychophysical analysis of acupuncture analgesia. Pain 1984;19(1):27-42.CrossrefPubMedGoogle Scholar

  • [60]

    Han J. Acupuncture and endorphins. Neurosci Lett 2004;361:258-61.Google Scholar

  • [61]

    Huang C, Wang Y, Han JS, Wan Y. Characteristics of electroacupunctureinduced analgesia in mice: variation with strain, frequency, intensity and opioid involvement. Brain Res 2002;945:20-5.Google Scholar

  • [62]

    Szczudlik A, Lypka A. Plasma immunoreactive beta-endorphin and enkephalin concentration in healthy subjects before and after electroacupuncture. Acupunct Electrother Res 1983;8(2):127-37.PubMedCrossrefGoogle Scholar

  • [63]

    Facchinetti F, Nappi G, Savoldi F, Genazzani AR. Primary headaches: reduced circulating beta-lipotropin and beta-endorphin levels with impaired reactivity to acupuncture. Cephalalgia 1981;1(4):195-201.PubMedCrossrefGoogle Scholar

  • [64]

    Chang FC, Tsai HY, Yu MC, Yi PL, Lin JG. The central serotonergic system mediates the analgesic effect of electroacupuncture on ZUSANLI (ST36) acupoints. J Biomed Sci 2004;11(2):179-85.PubMedGoogle Scholar

  • [65]

    Takeshige C, Sato T, Mera T, Hisamitsu T, Fang J. Descending pain inhibitory system involved in acupuncture analgesia. Brain Res Bull 1992;29(5):617-34.CrossrefPubMedGoogle Scholar

  • [66]

    Lin JG, Chen WL. Acupuncture analgesia: a review of its mechanisms of actions. Am J Chin Med 2008;36(4):635-45.PubMedCrossrefGoogle Scholar

  • [67]

    Guo HF, Tian J, Wang X, Fang Y, Hou Y, Han J. Brain substrates activated by electroacupuncture of different frequencies (I): Comparative study on the expression of oncogene c-fos and genes coding for three opioid peptides. Brain Res Mol Brain Res 1996;43(1-2):157-66.PubMedCrossrefGoogle Scholar

  • [68]

    Goldman N, Chen M, Fujita T, Xu Q, Peng W, Liu W, Jensen TK, Pei Y, Wang F, Han X, Chen JF, Schnermann J, Takano T, Bekar L, Tieu K, Nedergaard M. AdenosineA1receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci 2011;13(7):883-8.Google Scholar

  • [69]

    Zhao ZQ. Neural mechanism underlying acupuncture analgesia. Prog Neurobiol 2008;85(4):355-75.PubMedCrossrefGoogle Scholar

  • [70]

    Napadow V, Makris N, Liu J, Kettner NW, Kwong KK, Hui KK. Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI. Hum Brain Mapp 2005;24(3):193-205.CrossrefPubMedGoogle Scholar

  • [71]

    Li K, Shan B, Xu J, Liu H, Wang W, Zhi L, Li K, Yan B, Tang X. Changes in FMRI in thehumanbrain related to different durations of manual acupuncture needling. J Altern Complement Med 2006;12(7):615-23.PubMedCrossrefGoogle Scholar

  • [72]

    Zhang WT, Jin Z, Luo F, Zhang L, Zeng YW, Han JS. Evidence from brain imaging with fMRI supporting functional specificity of acupoints in humans. Neurosci Lett 2004;354(1):50-3.PubMedCrossrefGoogle Scholar

  • [73]

    Wu MT, Hsieh JC, Xiong J, Yang CF, Pan HB, Chen YC, Tsai G, Rosen BR, Kwong KK. Central nervous pathway for acupuncture stimulation: localization of processing with functional MR imaging of the brain-preliminary experience. Radiology 1999;212(1):133-41.CrossrefPubMedGoogle Scholar

  • [74]

    Napadow V, Dhond R, Park K, Kim J, Makris N, Kwong KK, Harris RE, Purdon PL, Kettner N, Hui KK. Time-variant fMRI activity in the brainstem and higher structures in response to acupuncture. Neuroimage 2009;47(1):289-301.PubMedCrossrefGoogle Scholar

  • [75]

    Liu WC, Feldman SC, Cook DB, Hung DL, Xu T, Kalnin AJ, Komisaruk BR. fMRI study of acupuncture-induced periaqueductal gray activity in humans. Neuroreport 2004;15(12):1937-40.CrossrefPubMedGoogle Scholar

  • [76]

    Zhang WT, Jin Z, Cui GH, Zhang KL, Zhang L, Zeng YW, Luo F, Chen AC, Han JS. Relations between brain network activation and analgesic effect induced by low vs. high frequency electrical acupoint stimulation in different subjects: a functional magnetic resonance imaging study. Brain Res 2003;982(2):168-78.CrossrefPubMedGoogle Scholar

  • [77]

    Biella G, Sotgiu ML, Pellegata G, Paulesu E, Castiglioni I, Fazio F. Acupuncture produces central activations in pain regions. Neuroimage 2001;14(1 Pt.1):60-6.PubMedCrossrefGoogle Scholar

  • [78]

    Zhang JH, Cao XD, Lie J, Tang WJ, Liu HQ, Fenga XY. Neuronal specificity of needling acupoints at same meridian: a control functional magnetic resonance imaging study with electroacupuncture. Acupunct Electrother Res 2007;32(3-4):179-93.CrossrefGoogle Scholar

  • [79]

    Hui KK, Liu J, Marina O, Napadow V, Haselgrove C, Kwong KK, Kennedy DN, Makris N. The integrated response of thehumancerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI. Neuroimage 2005;27(3):479-96.PubMedCrossrefGoogle Scholar

  • [80]

    Wu MT, Sheen JM, Chuang KH, Yang P, Chin SL, Tsai CY, Chen CJ, Liao JR, Lai PH, Chu KA, Pan HB, Yang CF. Neuronal specificity of acupuncture response: a fMRI study with electroacupuncture. Neuroimage 2002;16(4):1028-37.CrossrefPubMedGoogle Scholar

  • [81]

    Qin W, Tian J, Bai L, Pan X, Yang L, Chen P, Dai J, Ai L, Zhao B, Gong Q, Wang W, von Deneen KM, Liu Y. FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network. Mol Pain 2008;4:55.PubMedGoogle Scholar

  • [82]

    Fang J, Jin Z, Wang Y, Li K, Kong J, Nixon EE, Zeng Y, Ren Y, Tong H, Wang Y, Wang P, Hui KK. The salient characteristics of the central effects of acupuncture needling: limbic-paralimbic-neocortical network modulation. Hum Brain Mapp 2009;30(4):1196-206.CrossrefPubMedGoogle Scholar

  • [83]

    Cho ZH, Oleson TD, Alimi D, Niemtzow RC. Acupuncture: the search for biologic evidence with functional magnetic resonance imaging and positron emission tomography techniques. J Altern Complement Med 2002;8(4):399-401.PubMedCrossrefGoogle Scholar

  • [84]

    Lee A, Fan LT. Stimulation of the wrist acupuncture point P6 for preventing postoperative nausea and vomiting. Cochrane Database Syst Rev 2009;(2):CD003281.Google Scholar

  • [85]

    Pohl A, Nordin C. Clinical and biochemical observations during treatment of depression with electroacupuncture: a pilot study. Hum Psychopharmacol 2002;17(7):345-8.PubMedCrossrefGoogle Scholar

  • [86]

    Liu Z, Sun F, Li J, Wang Y, Hu K. Effect of acupuncture on weight loss evaluated by adrenal function. J Tradit Chin Med 1993;13(3):169-73.PubMedGoogle Scholar

  • [87]

    WanWJ, MaCY, Xiong XA, WangL, Ding L, Zhang YX, WangY. Clinical observation on therapeutic effect of electroacupuncture at Quchi (LI 11) for treatment of essential hypertension. Zhongguo Zhen Jiu 2009;29(5):349-52.PubMedGoogle Scholar

  • [88]

    Cruccu G, Aziz TZ, Garcia-Larrea L, Hansson P, Jensen TS, Lefaucheur JP, Simpson BA, Taylor RS. EFNS guidelines on neurostimulation therapy for neuropathic pain. Eur J Neurol 2007;14(9):952-70.PubMedCrossrefGoogle Scholar

  • [89]

    Nakata H, Inui K, Wasaka T, Tamura Y, Tran TD, Qiu Y, Wang X, Nguyen TB, Kakigi R. Movements modulate cortical activities evoked by noxious stimulation. Pain 2004;107(1-2):91-8.PubMedCrossrefGoogle Scholar

  • [90]

    Nakata H, Sakamoto K, Honda Y, Mochizuki H, Hoshiyama M, Kakigi R. Centrifugal modulation of human LEP components to a task-relevant noxious stimulation triggering voluntary movement. Neuroimage 2009;45(1):129-42.PubMedCrossrefGoogle Scholar

  • [91]

    Vrana J, Polacek H, Stancak A. Somatosensory-evoked potentials are influenced differently by isometric muscle contraction of stimulated and non-stimulated hand in humans. Neurosci Lett 2005;386(3):170-5.CrossrefPubMedGoogle Scholar

  • [92]

    Gustin SM, Wrigley PJ, Henderson LA, Siddall PJ. Brain circuitry underlying pain in response to imagined movement in people with spinal cord injury. Pain 2010;148(3):438-45.PubMedCrossrefGoogle Scholar

  • [93]

    Moseley GL. Using visual illusion to reduce at-level neuropathic pain in paraplegia. Pain 2007;130(3):294-8.PubMedCrossrefGoogle Scholar

  • [94]

    Soler MD, Kumru H, Pelayo R, Vidal J, Tormos JM, Fregni F, Navarro X, Pascual-Leone A. Effectiveness of transcranial direct current stimulation and visual illusion on neuropathic pain in spinal cord injury. Brain 2010;133(9):2565-77.CrossrefPubMedGoogle Scholar

  • [95]

    Rhudy JL, Williams AE. Gender differences in pain: do emotions play a role? Gend Med 2005;2(4):208-26.PubMedCrossrefGoogle Scholar

  • [96]

    Loggia ML, Schweinhardt P, Villemure C, Bushnell MC. Effects of psychological state on pain perception in the dental environment. J Can Dent Assoc 2008;74(7):651-6.PubMedGoogle Scholar

  • [97]

    Roy M, Lebuis A, Peretz I, Rainville P. The modulation of pain by attention and emotion: a dissociation of perceptual and spinal nociceptive processes. Eur J Pain, in press, doi:10.1016/j.ejpain.2010.11.013.Google Scholar

  • [98]

    Roy M, Peretz I, Rainville P. Emotional valence contributes to music-induced analgesia. Pain 2008;134(1-2):140-7.PubMedCrossrefGoogle Scholar

  • [99]

    Villemure C, Bushnell MC. Mood influences supraspinal pain processing separately from attention. J Neurosci 2009;29(3):705-15.PubMedCrossrefGoogle Scholar

  • [100]

    Bar KJ, Brehm S, Boettger MK, Boettger S, Wagner G, Sauer H. Pain perception in major depression depends on pain modality. Pain 2005;117(1-2):97-103.CrossrefPubMedGoogle Scholar

  • [101]

    Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and pain comorbidityPubMedCrossrefGoogle Scholar

  • [102]

    Rommel O, Willweber-Strumpf A, Wagner P, Surall D, Malin JP, Zenz M. Psychological abnormalities in patients with complex regional pain syndrome (CRPS). Schmerz 2005;19(4):272-84.PubMedGoogle Scholar

  • [103]

    Marinus J, Van Hilten JJ. Clinical expression profiles of complex regional pain syndrome, fibromyalgia and a-specific repetitive strain injury: more common denominators than pain? Disabil Rehabil 2006;28(6):351-62.CrossrefPubMedGoogle Scholar

  • [104]

    Bar KJ, Brehm S, Boettger MK, Wagner G, Boettger S, Sauer H. Decreased sensitivity to experimental pain in adjustment disorder. Eur J Pain 2006;10(5):467-71.PubMedCrossrefGoogle Scholar

  • [105]

    Bar KJ, Wagner G, Koschke M, Boettger S, Boettger MK, Schlosser R, Sauer H. Increased prefrontal activation during pain perception in major depression. Biol Psychiatry 2007;62(11):1281-7.PubMedCrossrefGoogle Scholar

  • [106]

    Dickens C, McGowanL, Dale S. Impact of depression on experimental pain perception: a systematic review of the literature with meta-analysis. Psychosom Med 2003;65(3):369-75.CrossrefPubMedGoogle Scholar

  • [107]

    Chan HN, Fam J, Ng BY. Use of antidepressants in the treatment of chronic pain. Ann Acad Med Singapore 2009;38(11):974-9.PubMedGoogle Scholar

  • [108]

    Stahl SM. The psychopharmacology of painful physical symptoms in depression. J Clin Psychiatry 2002;63(5):382-3.PubMedCrossrefGoogle Scholar

  • [109]

    Klauenberg S, Maier C, Assion HJ, Hoffmann A, Krumova EK, Magerl W, Scherens A, Treede RD, Juckel G. Depression and changed pain perception: hints for a central disinhibition mechanism. Pain 2008;140(2):332-43.PubMedCrossrefGoogle Scholar

  • [110]

    Mayberg HS. Positronemission tomography imaging in depression: a neural systems perspective. Neuroimaging Clin N Am 2003;13(4):805-15.CrossrefGoogle Scholar

  • [111]

    Wagner G, Sinsel E, Sobanski T, Kohler S, Marinou V, Mentzel HJ, Sauer H, Schlosser RG. Cortical inefficiency in patients with unipolar depression: an event-related FMRI study with the Stroop task. Biol Psychiatry 2006;59(10):958-65.CrossrefPubMedGoogle Scholar

  • [112]

    Strigo IA, Simmons AN, Matthews SC, Craig AD, Paulus MP. Association of major depressive disorder with altered functional brain response during anticipation and processing of heat pain. Arch Gen Psychiatry 2008;65(11):1275-84.PubMedCrossrefGoogle Scholar

  • [113]

    Berna C, Leknes S, Holmes EA, Edwards RR, Goodwin GM, Tracey I. Induction of depressed mood disrupts emotion regulation neurocircuitry and enhances pain unpleasantness. Biol Psychiatry 2010;67(11):1083-90.CrossrefPubMedGoogle Scholar

  • [114]

    Giesecke T, Gracely RH, Williams DA, Geisser ME, Petzke FW, Clauw DJ. The relationship between depression, clinical pain, and experimental pain in a chronic pain cohort. Arthritis Rheum 2005;52(5):1577-84.CrossrefGoogle Scholar

  • [115]

    Kain ZN, Sevarino F, Alexander GM, Pincus S, Mayes LC. Preoperative anxiety and postoperative pain in women undergoing hysterectomy. A repeatedmeasures design. J Psychosom Res 2000;49(6):417-22.CrossrefGoogle Scholar

  • [116]

    Leeuw M, Goossens ME, Linton SJ, Crombez G, Boersma K, Vlaeyen JW. The fear-avoidance model of musculoskeletal pain: current state of scientific evidence. J Behav Med 2007;30(1):77-94.CrossrefPubMedGoogle Scholar

  • [117]

    Eysenck M. Anxiety: the cognitive perspective. Hove: Erlbaum; 1992.Google Scholar

  • [118]

    Berna MJ, Tapia JA, Sancho V, Jensen RT. Progress in developing cholecystokinin (CCK)/gastrin receptor ligands that have therapeutic potential. Curr Opin Pharmacol 2007;7(6):583-92.CrossrefPubMedGoogle Scholar

  • [119]

    Hebb AL, Poulin JF, Roach SP, Zacharko RM, Drolet G. Cholecystokinin and endogenous opioid peptides: interactive influence on pain, cognition, and emotion. Prog Neuropsychopharmacol Biol Psychiatry 2005;29(8):1225-38.PubMedCrossrefGoogle Scholar

  • [120]

    Bernal SA, Morgan MM, Craft RM. PAG mu opioid receptor activation underlies sex differences in morphine antinociception. Behav Brain Res 2007;177(1):126-33.CrossrefPubMedGoogle Scholar

  • [121]

    Jurna I, Zetler G. Antinociceptive effect of centrally administered caerulein and cholecystokinin (CCK). Eur J Pharmacol 1981;173:323-31.Google Scholar

  • [122]

    Itoh S, Katsuura G, Maeda Y. Caerulein and cholecystokinin suppress betaendorphin-induced analgesia in the rat. Eur J Pharmacol 1982;80:421-5.Google Scholar

  • [123]

    Brack KE, Lovick TA. Neuronal excitability in the periaqueductal grey matter during the estrous cycle in female Wistar rats. Neuroscience 2007;144(1):325-35.CrossrefPubMedGoogle Scholar

  • [124]

    Liu H, Chandler S, Beitz AJ, Shipley MT, Behbehani MM. Characterization of the effect of cholecystokinin (CCK) on neurons in the periaqueductal gray of the rat: immunocytochemical and in vivo and in vitro electrophysiological studies. Brain Res 1994;642(1-2):83-94.PubMedCrossrefGoogle Scholar

  • [125]

    Heinricher MM, Neubert MJ. Neural basis for the hyperalgesic action of cholecystokinin in the rostral ventromedial medulla. J Neurophysiol 2004;92(4):1982-9.PubMedCrossrefGoogle Scholar

  • [126]

    Li Y, Han JS. Cholecystokinin-octapeptide antagonizes morphine analgesia in periaqueductal gray of the rat. Brain Res 1989;480(1-2):105-10.CrossrefPubMedGoogle Scholar

  • [127]

    Andre J, Zeau B, Pohl M, Cesselin F, Benoliel JJ, Becker C. Involvement of cholecystokininergic systems in anxiety-induced hyperalgesia in male rats: behavioral and biochemical studies. J Neurosci 2005;25(35):7896-904.CrossrefPubMedGoogle Scholar

  • [128]

    Fairhurst M, Wiech K, Dunckley P, Tracey I. Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 2007;128(1-2):101-10.PubMedCrossrefGoogle Scholar

  • [129]

    Ploghaus A, Narain C, Beckmann CF, Clare S, Bantick S, Wise R, Matthews PM, Rawlins JN, Tracey I. Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J Neurosci 2001;21(24):9896-903.CrossrefGoogle Scholar

  • [130]

    Gray JA, McNaughton N. The Neuropsychology of Anxiety. Oxford: Oxford University Press; 2000.Google Scholar

  • [131]

    Ochsner KN, Ludlow DH, Knierim K, Hanelin J, Ramachandran T, Glover GC, Mackey SC. Neural correlates of individual differences in pain-related fear and anxiety. Pain 2006;120(1-2):69-77.PubMedCrossrefGoogle Scholar

  • [132]

    Johnson SC, Baxter LC, Wilder LS, Pipe JG, Heiserman JE, Prigatano GP. Neural correlates of self-reflection. Brain 2002;125(Pt. 8):1808-14.CrossrefPubMedGoogle Scholar

  • [133]

    Quartana PJ, CampbellCM, Edwards RR. Pain catastrophizing: a critical review. Expert Rev Neurother 2009;9(5):745-58.PubMedCrossrefGoogle Scholar

  • [134]

    Sullivan MJ, Thorn B, Haythornthwaite JA, Keefe F, Martin M, Bradley LA, Lefebvre JC. Theoretical perspectives on the relation between catastrophizing and pain. Clin J Pain 2001;17(1):52-64.PubMedCrossrefGoogle Scholar

  • [135]

    Sullivan MJ, D'Eon JL. Relation between catastrophizing and depression in chronic pain patients. J Abnorm Psychol 1990;99(3):260-3.PubMedCrossrefGoogle Scholar

  • [136]

    Rosenstiel AK, Keefe FJ. The use of coping strategies in chronic low back pain patients: relationship to patient characteristics and current adjustment. Pain 1983;17(1):33-44.PubMedCrossrefGoogle Scholar

  • [137]

    Bartley EJ, Rhudy JL. The influence of pain catastrophizing on experimentally induced emotion and emotional modulation of nociception. J Pain 2008;9(5):388-96.CrossrefPubMedGoogle Scholar

  • [138]

    Rhudy JL, Maynard LJ, Russell JL. Does in vivo catastrophizing engage descending modulation of spinal nociception? J Pain 2007;8(4):325-33.CrossrefPubMedGoogle Scholar

  • [139]

    Crombez G, Eccleston C, Baeyens F, Eelen P. When somatic information threatens, catastrophic thinking enhances attentional interference. Pain 1998;75(2-3):187-98.PubMedCrossrefGoogle Scholar

  • [140]

    Sullivan MJ, Lynch ME, Clark AJ. Dimensions of catastrophic thinking associated with pain experience and disability in patients with neuropathic pain conditions. Pain 2005;113(3):310-5.CrossrefPubMedGoogle Scholar

  • [141]

    Van Damme S, Crombez G, Eccleston C. Disengagement from pain: the role of catastrophic thinking about pain. Pain 2004;107(1-2):70-6.Google Scholar

  • [142]

    Crombez G, Eccleston C, Van den Broeck A, Goubert L, Van Houdenhove B. Hypervigilance to pain in fibromyalgia: the mediating role of pain intensity and catastrophic thinking about pain. Clin J Pain 2004;20(2)PubMedCrossrefGoogle Scholar

  • [143]

    Gracely RH, Geisser ME, Giesecke T, Grant MA, Petzke F, Williams DA, Clauw DJ. Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain 2004;127(Pt. 4):835-43.CrossrefPubMedGoogle Scholar

  • [144]

    France CR, France JL, al'Absi M, Ring C, McIntyre D. Catastrophizing is related to pain ratings, but not nociceptive flexion reflex threshold. Pain 2002;99(3):459-63.PubMedCrossrefGoogle Scholar

  • [145]

    Weissman-Fogel I, Sprecher E, Pud D. Effects of catastrophizing on pain perception and pain modulation. Exp Brain Res 2008;186(1):79-85.PubMedCrossrefGoogle Scholar

  • [146]

    Seminowicz DA, Davis KD. Cortical responses to pain in healthy individuals depends on pain catastrophizing. Pain 2006;120(3):297-306.PubMedCrossrefGoogle Scholar

  • [147]

    Lorenz J, Minoshima S, Casey KL. Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 2003;126(Pt.5):1079-91.PubMedCrossrefGoogle Scholar

  • [148]

    Ford GK, Finn DP. Clinical correlates of stress-induced analgesia: evidence from pharmacological studies. Pain 2008;140(1):3-7.CrossrefPubMedGoogle Scholar

  • [149]

    Helmstetter FJ. The amygdala is essential for the expression of conditional hypoalgesia. Behav Neurosci 1992;106(3):518-28.PubMedCrossrefGoogle Scholar

  • [150]

    LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci 2000;23:155-84.Google Scholar

  • [151]

    Miczek KA, Thompson ML, Shuster L. Naloxone injections into the periaqueductal grey area and arcuate nucleus block analgesia in defeated mice. Psychopharmacology (Berl) 1985;87(1):39-42.CrossrefPubMedGoogle Scholar

  • [152]

    Wiedenmayer CP, Barr GA.Muopioid receptors in the ventrolateral periaqueductal gray mediate stress-induced analgesia but not immobility in rat pups. Behav Neurosci 2000;114(1):125-36.CrossrefGoogle Scholar

  • [153]

    Drugan RC, Grau JW, Maier SF, MaddenJT, Barchas JD. Cross tolerance between morphine and the long-term analgesic reaction to inescapable shock. Pharmacol Biochem Behav 1981;14(5):677-82.CrossrefPubMedGoogle Scholar

  • [154]

    Amir S, Amit Z. Enhanced analgesic effects of stress following chronic administration of naltrexone in rats. Eur J Pharmacol 1979;59(1-2):137-40.Google Scholar

  • [155]

    Cooper K, Carmody J. The characteristics of the opioid-related analgesia induced by the stress of swimming in the mouse. Neurosci Lett 1982;31(2):165-70.CrossrefPubMedGoogle Scholar

  • [156]

    Woolf CJ. Intrathecal high dose morphine produces hyperalgesia in the rat. Brain Res 1981;209(2):491-5.PubMedCrossrefGoogle Scholar

  • [157]

    Lewis JW, Cannon JT, Liebeskind JC. Opioid and nonopioid mechanisms of stress analgesia. Science 1980;208(4444):623-5.PubMedCrossrefGoogle Scholar

  • [158]

    Bodnar RJ, Kelly DD, Brutus M, Glusman M. Stress-induced analgesia: neural and hormonal determinants. Neurosci Biobehav Rev 1980;4(1):87-100.CrossrefPubMedGoogle Scholar

  • [159]

    Hopkins E, Spinella M, Pavlovic ZW, Bodnar RJ. Alterations in swim stress-induced analgesia and hypothermia following serotonergic or NMDA antagonists in the rostral ventromedial medulla of rats. Physiol Behav 1998;64(3):219-25.CrossrefPubMedGoogle Scholar

  • [160]

    Martenson ME, Cetas JS, Heinricher MM. A possible neural basis for stressinduced hyperalgesia. Pain 2009;142(3):236-44.CrossrefGoogle Scholar

  • [161]

    Imbe H, Murakami S, Okamoto K, Iwai-Liao Y, Senba E. The effects of acute and chronic restraint stress on activation of ERK in the rostral ventromedial medulla and locus coeruleus. Pain 2004;112(3):361-71.PubMedCrossrefGoogle Scholar

  • [162]

    Millan MJ. Descending control of pain. Prog Neurobiol 2002;66:355-474.Google Scholar

  • [163]

    Trujillo KA, Akil H. Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science 1991;251(4989):85-7.CrossrefPubMedGoogle Scholar

  • [164]

    Mayer DJ, Mao J, Holt J, Price DD. Cellular mechanisms of neuropathic pain, morphine tolerance, and their interactions. Proc Natl Acad Sci U S A 1999;96(14):7731-6.CrossrefGoogle Scholar

  • [165]

    McNally GP, Westbrook RF. Effects of systemic, intracerebral, or intrathecal administration of an N-methyl-d-aspartate receptor antagonist on associative morphine analgesic tolerance and hyperalgesia in rats. Behav Neurosci 1998;112(4):966-78.PubMedCrossrefGoogle Scholar

  • [166]

    Suarez-Roca H, Silva JA, Arcaya JL, Quintero L, Maixner W, Pinerua-Shuhaibar L. Role of mu-opioid and NMDA receptors in the development and maintenance of repeated swim stress-induced thermal hyperalgesia. Behav Brain Res 2006;167(2):205-11.CrossrefPubMedGoogle Scholar

  • [167]

    Rosenberger C, Elsenbruch S, Scholle A, de Greiff A, Schedlowski M, Forsting M, Gizewski ER. Effects of psychological stress on the cerebral processing of visceral stimuli in healthy women. Neurogastroenterol Motil 2009;21(7):740-5.PubMedCrossrefGoogle Scholar

  • [168]

    Porcelli P, Todarello O. Psychological factors affecting functional gastrointestinal disorders. Adv Psychosom Med 2007;28:34-56.Google Scholar

  • [169]

    Clauw DJ. Fibromyalgia: an overview. Am J Med 2009;122(12 Suppl.):S3-13.PubMedCrossrefGoogle Scholar

  • [170]

    Zubieta JK, Stohler CS. Neurobiological mechanisms of placebo responses. Ann N Y Acad Sci 2009;1156:198-210.Google Scholar

  • [171]

    Qiu YH, Wu XY, Xu H, Sackett D. Neuroimaging study of placebo analgesia in humans. Neurosci Bull 2009;25(5):277-82.CrossrefPubMedGoogle Scholar

  • [172]

    Tracey I. Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans. Nat Med 2010;16(11):1277-83.PubMedCrossrefGoogle Scholar

  • [173]

    Wager TD, Atlas LY, Leotti LA, Rilling JK. Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience. J Neurosci 2011;31(2):439-52.CrossrefPubMedGoogle Scholar

  • [174]

    Levine JD, Gordon NC, Fields HL. The mechanism of placebo analgesia. Lancet 1978;2(8091):654-7.PubMedGoogle Scholar

  • [175]

    Petrovic P, Kalso E, Petersson KM, Ingvar M. Placebo and opioid analgesia-imaging a shared neuronal network. Science 2002;295(5560):1737-40.CrossrefPubMedGoogle Scholar

  • [176]

    Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, Kosslyn SM, Rose RM, Cohen JD. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 2004;303(5661):1162-7.PubMedCrossrefGoogle Scholar

  • [177]

    Bingel U, Lorenz J, Schoell E, Weiller C, Buchel C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 2006;120(1-2):8-15.CrossrefPubMedGoogle Scholar

  • [178]

    Zubieta JK, Bueller JA, Jackson LR, Scott DJ, XuY, Koeppe RA, Nichols TE, Stohler CS. Placebo effects mediated by endogenous opioid activity on mu-opioid receptors. J Neurosci 2005;25(34):7754-62.PubMedCrossrefGoogle Scholar

  • [179]

    Zubieta JK, Yau WY, Scott DJ, Stohler CS. Belief or need? Accounting for individual variations in the neurochemistry of the placebo effect. Brain Behav Immun 2006;20(1):15-26.PubMedCrossrefGoogle Scholar

  • [180]

    Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta JK. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch Gen Psychiatry 2008;65(2):220-31.CrossrefPubMedGoogle Scholar

  • [181]

    Scott DJ, Heitzeg MM, Koeppe RA, Stohler CS, Zubieta JK. Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J Neurosci 2006;26(42):10789-95.PubMedCrossrefGoogle Scholar

  • [182]

    Colloca L, Benedetti F. Nocebo hyperalgesia: how anxiety is turned into pain. Curr Opin Anaesthesiol 2007;20(5):435-9.CrossrefPubMedGoogle Scholar

  • [183]

    Benedetti F, Amanzio M, Vighetti S, Asteggiano G. The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J Neurosci 2006;26(46):12014-22.CrossrefPubMedGoogle Scholar

  • [184]

    Porro CA, Baraldi P, Pagnoni G, Serafini M, Facchin P, Maieron M, Nichelli P. Does anticipation of pain affect cortical nociceptive systems? J Neurosci 2002;22(8):3206-14.PubMedCrossrefGoogle Scholar

  • [185]

    Sawamoto N, Honda M, Okada T, Hanakawa T, Kanda M, Fukuyama H, Konishi J, Shibasaki H. Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging study. J Neurosci 2000;20(19):7438-45.CrossrefPubMedGoogle Scholar

  • [186]

    Kong J, Gollub RL, Polich G, Kirsch I, Laviolette P, Vangel M, Rosen B, Kaptchuk TJ. A functional magnetic resonance imaging study on the neural mechanisms of hyperalgesic nocebo effect. J Neurosci 2008;28(49):13354-62.PubMedCrossrefGoogle Scholar

  • [187]

    Miron D, Duncan GH, Bushnell MC. Effects of attention on the intensity and unpleasantness of thermal pain. Pain 1989;39(3):345-52.PubMedCrossrefGoogle Scholar

  • [188]

    Petrovic P, Petersson KM, Ghatan PH, Stone-Elander S, Ingvar M. Painrelated cerebral activation is altered by a distracting cognitive task. Pain 2000;85(1-2):19-30.CrossrefGoogle Scholar

  • [189]

    Qiu Y, Inui K, Wang X, Nguyen BT, Tran TD, Kakigi R. Effects of distraction on magnetoencephalographic responses ascending through C-fibers in humans. Clin Neurophysiol 2004;115(3):636-46.PubMedCrossrefGoogle Scholar

  • [190]

    Spence C, Bentley DE, Phillips N, McGlone FP, Jones AK. Selective attention to pain: a psychophysical investigation. Exp Brain Res 2002;145(3):395-402.CrossrefGoogle Scholar

  • [191]

    Bantick SJ, Wise RG, Ploghaus A, Clare S, Smith SM, Tracey I. Imaging how attention modulates pain in humans using functional MRI. Brain 2002;125(Pt. 2):310-9.PubMedCrossrefGoogle Scholar

  • [192]

    Brooks JC, Nurmikko TJ, Bimson WE, Singh KD, Roberts N. fMRI of thermal pain: effects of stimulus laterality and attention. Neuroimage 2002;15(2):293-301.PubMedCrossrefGoogle Scholar

  • [193]

    Bushnell MC, Duncan GH, Hofbauer RK, Ha B, Chen JI, Carrier B. Pain perception: is there a role for primary somatosensory cortex? Proc Natl Acad Sci U S A 1999;96(14):7705-9.CrossrefGoogle Scholar

  • [194]

    Longe SE, Wise R, Bantick S, Lloyd D, Johansen-Berg H, McGlone F, Tracey I. Counter-stimulatory effects on pain perception and processing are significantly altered by attention: an fMRI study. Neuroreport 2001;12(9):2021-5.CrossrefPubMedGoogle Scholar

  • [195]

    Coen SJ, Aziz Q, Yaguez L, Brammer M, Williams SC, Gregory LJ. Effects of attention on visceral stimulus intensity encoding in the male human brain. Gastroenterology 2008;135(6):2065-74, 74 e1.Google Scholar

  • [196]

    Peyron R, Garcia-Larrea L, Gregoire MC, Costes N, Convers P, Lavenne F, Mauguiere F, Michel D, Laurent B. Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 1999;122(Pt. 9):1765-80.CrossrefPubMedGoogle Scholar

  • [197]

    Seminowicz DA, Mikulis DJ, Davis KD. Cognitive modulation of pain-related brain responses depends on behavioral strategy. Pain 2004;112(1-2):48-58.CrossrefPubMedGoogle Scholar

  • [198]

    Gregory LJ, Yaguez L, Williams SC, Altmann C, Coen SJ, Ng V, Brammer MJ, Thompson DG, Aziz Q. Cognitive modulation of the cerebral processing of human oesophageal sensation using functional magnetic resonance imaging. Gut 2003;52(12):1671-7.CrossrefPubMedGoogle Scholar

  • [199]

    Frankenstein UN, Richter W, McIntyre MC, Remy F. Distraction modulates anterior cingulate gyrus activations during the cold pressor test. Neuroimage 2001;14(4):827-36.CrossrefPubMedGoogle Scholar

  • [200]

    Tracey I, Ploghaus A, Gati JS, Clare S, Smith S, Menon RS, Matthews PM. Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci 2002;22(7):2748-52.CrossrefPubMedGoogle Scholar

  • [201]

    Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B, Erhard P, Tolle TR. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain-an fMRI analysis. Pain 2004;109(3):399-408.CrossrefPubMedGoogle Scholar

  • [202]

    Eccleston C, Crombez G. Pain demands attention: a cognitive-affective model of the interruptive function of pain. Psychol Bull 1999;125(3):356-66.CrossrefPubMedGoogle Scholar

  • [203]

    Keefe FJ, Williams DA. A comparison of coping strategies in chronic pain patients in different age groups. J Gerontol 1990;45(4):P161-5.CrossrefPubMedGoogle Scholar

  • [204]

    Goubert L, Crombez G, Eccleston C, Devulder J. Distraction from chronic pain during a pain-inducing activity is associated with greater post-activity pain. Pain 2004;110(1-2):220-7.CrossrefPubMedGoogle Scholar

  • [205]

    Hofbauer RK, Rainville P, Duncan GH, Bushnell MC. Cortical representation of the sensory dimension of pain. J Neurophysiol 2001;86(1):402-11.PubMedCrossrefGoogle Scholar

  • [206]

    Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 1997;277(5328):968-71.PubMedCrossrefGoogle Scholar

  • [207]

    Rainville P, Hofbauer RK, Paus T, Duncan GH, Bushnell MC, Price DD. Cerebral mechanisms of hypnotic induction and suggestion. J Cogn Neurosci 1999;11(1):110-25.PubMedCrossrefGoogle Scholar

  • [208]

    Wobst AH. Hypnosis and surgery: past, present, and future. Anesth Analg 2007;104(5):1199-208.CrossrefPubMedGoogle Scholar

  • [209]

    Flory N, Salazar GM, Lang EV. Hypnosis for acute distress management during medical procedures. Int J Clin Exp Hypn 2007;55(3):303-17.PubMedCrossrefGoogle Scholar

  • [210]

    Abrahamsen R, Baad-Hansen L, Svensson P. Hypnosis in the management of persistent idiopathic orofacial pain-clinical and psychosocial findings. Pain 2008;136(1-2):44-52.PubMedCrossrefGoogle Scholar

  • [211]

    Abrahamsen R, Zachariae R, Svensson P. Effect of hypnosis on oral function and psychological factors in temporomandibular disorders patients. J Oral Rehabil 2009;36(8):556-70.PubMedCrossrefGoogle Scholar

  • [212]

    Hammond DC. Review of the efficacy of clinical hypnosis with headaches and migraines. Int J Clin Exp Hypn 2007;55(2):207-19.CrossrefPubMedGoogle Scholar

  • [213]

    Jensen MP. Hypnosis for chronic pain management: a new hope. Pain 2009;146(3):235-7.CrossrefPubMedGoogle Scholar

  • [214]

    Faymonville ME, Boly M, Laureys S. Functional neuroanatomy of the hypnotic state. J Physiol Paris 2006;99(4-6):463-9.PubMedCrossrefGoogle Scholar

  • [215]

    Faymonville ME, Laureys S, Degueldre C, DelFiore G, Luxen A, Franck G, Lamy M, Maquet P. Neural mechanisms of antinociceptive effects of hypnosis. Anesthesiology 2000;92(5):1257-67.CrossrefPubMedGoogle Scholar

  • [216]

    Horton JE, Crawford HJ, Harrington G, Downs3rd JH. Increased anterior corpus callosum size associated positively with hypnotizability and the ability to control pain. Brain 2004;127(Pt. 8):1741-7.CrossrefPubMedGoogle Scholar

  • [217]

    Vanhaudenhuyse A, Boly M, Balteau E, Schnakers C, Moonen G, Luxen A, Lamy M, Degueldre C, Brichant JF, Maquet P, Laureys S, Faymonville ME. Pain and non-pain processing during hypnosis: a thulium-YAG event-related fMRI study. Neuroimage 2009;47(3):1047-54.CrossrefPubMedGoogle Scholar

  • [218]

    De Pascalis V, Cacace I, Massicolle F. Focused analgesia in waking and hypnosis: effects on pain, memory, and somatosensory event-related potentials. Pain 2008;134(1-2):197-208.CrossrefPubMedGoogle Scholar

  • [219]

    Kiernan BD, Dane JR, Phillips LH, Price DD. Hypnotic analgesia reduces R-III nociceptive reflex: further evidence concerning the multifactorial nature of hypnotic analgesia. Pain 1995;60(1):39-47.CrossrefPubMedGoogle Scholar

  • [220]

    Zachariae R, Andersen OK, Bjerring P, Jorgensen MM, Arendt-Nielsen L. Effects of an opioid antagonist on pain intensity and withdrawal reflexes during induction of hypnotic analgesia in high- and low-hypnotizable volunteers. Eur J Pain 1998;2(1):25-34.PubMedCrossrefGoogle Scholar

  • [221]

    Wik G, Fischer H, Bragee B, Finer B, Fredrikson M. Functional anatomy of hypnotic analgesia: a PET study of patients with fibromyalgia. Eur J Pain 1999;3(1):7-12.PubMedCrossrefGoogle Scholar

  • [222]

    Willoch F, Rosen G, Tolle TR, Oye I, Wester HJ, Berner N, Schwaiger M, Bartenstein P. Phantom limb pain in the human brain: unraveling neural circuitries of phantom limb sensations using positron emission tomography. Ann Neurol 2000;48(6):842-9.CrossrefPubMedGoogle Scholar

  • [223]

    Schulz-Stübner S, Krings T, Meister IG, Rex S, Thron A, Rossaint R. Clinical hypnosis modulates functional magnetic resonance imaging signal intensities and pain perception in a thermal stimulation paradigm. Reg Anesth Pain Med 2004;29(6):549-56.CrossrefGoogle Scholar

  • [224]

    Abrahamsen R, Dietz M, Lodahl S, Roepstorff A, Zachariae R, Ostergaard L, Svensson P. Effect of hypnotic pain modulation on brain activity in patients with temporomandibular disorder pain. Pain 2010;151(3):825-33.CrossrefPubMedGoogle Scholar

  • [225]

    Kupers R, Faymonville ME, Laureys S. The cognitive modulation of pain: hypnosis- and placebo-induced analgesia. Prog Brain Res 2005;150:251-69.Google Scholar

  • [226]

    Weisenberg M, Tepper I, Schwarzwald J. Humor as a cognitive technique for increasing pain tolerance. Pain 1995;63(2):207-12.CrossrefPubMedGoogle Scholar

  • [227]

    Foo H, Mason P. Analgesia accompanying food consumption requires ingestion of hedonic foods. J Neurosci 2009;29(41):13053-62.CrossrefPubMedGoogle Scholar

  • [228]

    Alden AL, Dale JA, DeGood DE. Interactive effects of the affect quality and directional focus of mental imagery on pain analgesia. Appl Psychophysiol Biofeedback 2001;26(2):117-26.PubMedCrossrefGoogle Scholar

  • [229]

    Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 2000;30(5):263-88.Google Scholar

  • [230]

    Eippert F, Finsterbusch J, Bingel U, Buchel C. Direct evidence for spinal cord involvement in placebo analgesia. Science 2009;326(5951):404.pCrossrefPubMedGoogle Scholar

About the article

Received: 2010-11-25

Revised: 2011-05-17

Accepted: 2011-05-18

Published Online: 2011-07-01

Published in Print: 2011-07-01


Conflict of interest The authors have no conflict of interest.


Citation Information: Scandinavian Journal of Pain, Volume 2, Issue 3, Pages 108–120, ISSN (Online) 1877-8879, ISSN (Print) 1877-8860, DOI: https://doi.org/10.1016/j.sjpain.2011.05.005.

Export Citation

© 2011 Scandinavian Association for the Study of Pain.Get Permission

Comments (0)

Please log in or register to comment.
Log in