Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Scandinavian Journal of Pain

Official Journal of the Scandinavian Association for the Study of Pain

Editor-in-Chief: Breivik, Harald


CiteScore 2017: 0.84

SCImago Journal Rank (SJR) 2017: 0.401
Source Normalized Impact per Paper (SNIP) 2017: 0.452

Online
ISSN
1877-8879
See all formats and pricing
More options …
Volume 13, Issue 1

Issues

Local infiltration analgesia in knee and hip arthroplasty efficacy and safety

Fatin Affas
  • Corresponding author
  • Anesthesia and Intensive Care Unit F:2, Department of Physiology and Pharmacology/Karolinska Institutet, Karolinska University Hospital, Solna, SE-17176, Stockholm, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-01 | DOI: https://doi.org/10.1016/j.sjpain.2016.05.041

Abstract

Background

This is a secondary publication of a PhD thesis. Local infiltration analgesia (LIA) is a new multimodal wound infiltration method for treating postoperative pain after knee and hip arthroplasty. This method is based on systematic infiltration of a mixture of ropivacaine, a long acting local anaesthetic, ketorolac, a cyclooxygenase inhibitor (NSAID), and adrenalin around all structures subject to surgical trauma in knee and hip arthroplasty.

Aims

Paper I: to assess whether pain relief after LIA in total knee arthroplasty (TKA) is as effective as femoral block. Paper II: to assess whether the plasma concentration of ropivacaine and ketorolac after LIA in TKA reaches levels linked to toxicity. Paper III: to assess whether the plasma concentration of unbound ropivacaine after LIA in THA reaches levels linked to toxicity and if it is higher in THA as compared to TKA. Paper IV: to assess whether the plasma concentration of ketorolac after LIA in THA reaches levels linked to toxicity, and whether administration of ketorolac in LIA is safer as compared to the intramuscular route.

Methods

Two patient cohorts of 40 patients scheduled for elective total knee arthroplasty (TKA) and 15 patients scheduled for total hip arthroplasty (THA) contributed to this work. In a randomized trial the efficacy of LIA in TKA with regard to pain at rest and upon movement was compared to femoral block.

Results

Both methods result in a high quality pain relief and similar morphine consumption during the 24 h monitoring period. In the same patient cohort the maximal total plasma concentration of ropivacaine was below the established toxic threshold for most patients. All patients in the THA cohort were subjected to the routine LIA protocol. In these patients both the total and unbound plasma concentration of ropivacaine was determined. The concentration was below the established toxic threshold. As ropivacaine binds to α–1 acid glycoprotein (AAG) we assessed the possibility that increased AAG may decrease the unbound concentration of ropivacaine. A 40% increase in AAG was detected during the first 24 h after surgery, however the fraction of unbound ropivacaine remained the same. There was a trend towards increased Cmax of ropivacaine with increasing age and decreasing creatinine clearance but the statistical power was too low to draw any conclusion. Administration of 30 mg ketorolac according to the LIA protocol both in TKA and THA resulted in a similar Cmax as previously reported after 10 mg intramuscular ketorolac. Neither age, nor body weight or BMI, nor creatinine clearance, correlates to maximal ketorolac plasma concentration or total exposure to ketorolac (AUC).

Conclusion

LIA provides good postoperative analgesia which is similar to femoral block after total knee arthroplasty. The plasma concentration of ropivacaine seems to be below toxic levels in most TKA patients. The unbound plasma concentration of ropivacaine in THA seems to be below the toxic level.

Implication

The use of ketorolac in LIA may not be safer than other routes of administration, and similar restrictions should be applied in patients at risk of developing side effects.

Keywords: Local infiltration analgesia; Total knee arthroplasty; Total hip arthroplasty; Ketorolac; Ropivacaine

References

  • [1]

    Soderman P, Malchau H, Herberts P. Outcome after total hip arthroplasty: Part I. General health evaluation in relation to definition of failure in the Swedish National Total Hip Arthoplasty register. Acta Orthop Scand 2000;71:354–9.Google Scholar

  • [2]

    Parvizi J. Pain management following total joint arthroplasty: making strides. J Bone Joint Surg Am 2012;94:1441.CrossrefPubMedGoogle Scholar

  • [3]

    Grosu I, Lavand’homme P, Thienpont E. Pain after knee arthroplasty: an unresolved issue. Knee Surg Sports Traumatol Arthrosc 2013.PubMedGoogle Scholar

  • [4]

    Husted H, Lunn TH, Troelsen A, Gaarn-Larsen L, Kristensen BB, Kehlet H. Why still in hospital after fast-track hip and knee arthroplasty? Acta Orthop 2011;82:679–84.CrossrefPubMedGoogle Scholar

  • [5]

    Capdevila X, Barthelet Y, Biboulet P, Ryckwaert Y, Rubenovitch J, d’Athis F. Effects of perioperative analgesic technique on the surgical outcome and duration of rehabilitation after major knee surgery. Anesthesiology 1999;91:8–15.CrossrefPubMedGoogle Scholar

  • [6]

    Reinhardt KR, Duggal S, Umunna BP, Reinhardt GA, Nam D, Alexiades M, Cornell CN. Intraarticular analgesia versus epidural plus femoral nerve block after TKA: a randomized, double-blind trial. Clin Orthop Relat Res 2013.Google Scholar

  • [7]

    McCartney CJ, McLeod GA. Local infiltration analgesia for total knee arthroplasty. Br J Anaesth 2011;107:487–9.PubMedCrossrefGoogle Scholar

  • [8]

    Sharma S, Iorio R, Specht LM, Davies-Lepie S, Healy WL. Complications of femoral nerve block for total knee arthroplasty. Clin Orthop Relat Res 2010;468:135–40.PubMedCrossrefGoogle Scholar

  • [9]

    Williams BA, Kentor ML, Bottegal MT. The incidence of falls at home in patients with perineural femoral catheters: a retrospective summary of a randomized clinical trial. Anesth Analg 2007;104:1002.CrossrefGoogle Scholar

  • [10]

    Kerr DR, Kohan L. Local infiltration analgesia: a technique for the control of acute postoperative pain following knee and hip surgery: a case study of 325 patients. Acta Orthop 2008;79:174–83.CrossrefPubMedGoogle Scholar

  • [11]

    Dillon JP, Brennan L, Mitchell D. Local infiltration analgesia in hip and knee arthroplasty: an emerging technique. Acta Orthop Belg 2012;78:158–63.PubMedGoogle Scholar

  • [12]

    Andersen LJ, Poulsen T, Krogh B, Nielsen T. Postoperative analgesia in total hip arthroplasty: a randomized double-blinded, placebo-controlled study on peroperative and postoperative ropivacaine, ketorolac, and adrenaline wound infiltration. Acta Orthop 2007;78:187–92.PubMedCrossrefGoogle Scholar

  • [13]

    Keijsers R, van Delft R, van den Bekerom MP, de Vries DC, Brohet RM, Nolte PA. Local infiltration analgesia following total knee arthroplasty: effect on post-operative pain and opioid consumption – a meta-analysis. Knee Surg Sports Traumatol Arthrosc 2013.PubMedGoogle Scholar

  • [14]

    Lombardi Jr AV, Berend KR, Mallory TH, Dodds KL, Adams JB. Soft tissue and intra-articular injection of bupivacaine, epinephrine, and morphine has a beneficial effect after total knee arthroplasty. Clin Orthop Relat Res 2004:125–30.Google Scholar

  • [15]

    Rostlund T, Kehlet H. High-dose local infiltration analgesia after hip and knee replacement – what is it, why does it work, and what are the future challenges. Acta Orthop 2007;78:159–61.PubMedCrossrefGoogle Scholar

  • [16]

    Toftdahl K, Nikolajsen L, Haraldsted V, Madsen F, Tonnesen EK, Soballe K. Comparison of peri- and intraarticular analgesia with femoral nerve block after total knee arthroplasty: a randomized clinical trial. Acta Orthop 2007;78:172–9.PubMedCrossrefGoogle Scholar

  • [17]

    Vendittoli PA, Makinen P, Drolet P, Lavigne M, Fallaha M, Guertin MC, Varin F. A multimodal analgesia protocol for total knee arthroplasty. A randomized, controlled study. J Bone Joint Surg Am 2006;88:282–9.CrossrefPubMedGoogle Scholar

  • [18]

    Busch CA, Shore BJ, Bhandari R, Ganapathy S, MacDonald SJ, Bourne RB, Rorabeck CH, McCalden RW. Efficacy of periarticular multimodal drug injection in total knee arthroplasty. A randomized trial. J Bone Joint Surg Am 2006;88:959–63.CrossrefPubMedGoogle Scholar

  • [19]

    Bianconi M, Ferraro L, Traina GC, Zanoli G, Antonelli T, Guberti A, Ricci R, Massari L. Pharmacokinetics and efficacy of ropivacaine continuous wound instillation after joint replacement surgery. Br J Anaesth 2003;91:830–5.PubMedGoogle Scholar

  • [20]

    Affas F, Nygards EB, Stiller CO, Wretenberg P, Olofsson C. Pain control after total knee arthroplasty: a randomized trial comparing local infiltration anesthesia and continuous femoral block. Acta Orthop 2011;82:441–7.CrossrefPubMedGoogle Scholar

  • [21]

    Affas F, Stiller C-O, Nygårds E-B, Stephanson N, Wretenberg P, Olofsson C. A randomized study comparing plasma concentration of ropivacaine after local infiltration analgesia and femoral block in primary total knee arthroplasty. Scand. J. Pain 2012;3:46–51.Google Scholar

  • [22]

    Affas F, Eksborg S, Wretenberg P, Olofsson C, Stiller CO. Ropivacaine pharmacokinetics after local infiltration analgesia in hip arthroplasty. Anesth Analg 2014;119:996–9.CrossrefPubMedGoogle Scholar

  • [23]

    Affas F, Eksborg S, Wretenberg P, Olofsson C, Stephanson N, Stiller CO. Plasma concentration of ketorolac after local infiltration analgesia in hip arthroplasty. Acta Anaesthesiol Scand 2014;58:1140–5.CrossrefPubMedGoogle Scholar

  • [24]

    Chaumeron A, Audy D, Drolet P, Lavigne M, Vendittoli PA. Periarticular injection in knee arthroplasty improves quadriceps function. Clin Orthop Relat Res 2013;471:2284–95.CrossrefPubMedGoogle Scholar

  • [25]

    Kehlet H. Postoperative pain relief – what is the issue. Br J Anaesth 1994;72:375–8.CrossrefPubMedGoogle Scholar

  • [26]

    Pham Dang C, Gautheron E, Guilley J, Fernandez M, Waast D, Volteau C, Nguyen JM, Pinaud M. The value of adding sciatic block to continuous femoral block for analgesia after total knee replacement. Reg Anesth Pain Med 2005;30:128–33.PubMedCrossrefGoogle Scholar

  • [27]

    Sinha SK, Abrams JH, Arumugam S, D’Alessio J, Freitas DG, Barnett JT, Weller RS. Femoral nerve block with selective tibial nerve block provides effective analgesia without foot drop after total knee arthroplasty: a prospective, randomized, observer-blinded study. Anesth Analg 2012;115:202–6.CrossrefPubMedGoogle Scholar

  • [28]

    Morin AM, Kratz CD, Eberhart LH, Dinges G, Heider E, Schwarz N, Eisenhardt G, Geldner G, Wulf H. Postoperative analgesia and functional recovery after total-knee replacement: comparison of a continuous posterior lumbar plexus (PSOAS compartment) block, a continuous femoral nerve block, and the combination of a continuous femoral and sciatic nerve block. Reg Anesth Pain Med 2005;30:434–45.PubMedGoogle Scholar

  • [29]

    Ganapathy S. Wound/intra-articular infiltration or peripheral nerve blocks for orthopedic joint surgery: efficacy and safety issues. Curr Opin Anaesthesiol 2012;25:615–20.CrossrefPubMedGoogle Scholar

  • [30]

    Spreng UJ, Dahl V, Hjall A, Fagerland MW, Raeder J. High-volume local infiltration analgesia combined with intravenous or local ketorolac + morphine compared with epidural analgesia after total knee arthroplasty. Br J Anaesth 2010;105:675–82.PubMedCrossrefGoogle Scholar

  • [31]

    Brill S, Plaza M. Non-narcotic adjuvants may improve the duration and quality of analgesia after knee arthroscopy: a brief review. Can J Anaesth 2004;51:975–8.PubMedCrossrefGoogle Scholar

  • [32]

    Scott DB, Lee A, Fagan D, Bowler GM, Bloomfield P, Lundh R. Acute toxicity of ropivacaine compared with that of bupivacaine. Anesth Analg 1989;69: 563–9.PubMedGoogle Scholar

  • [33]

    Knudsen K, Beckman Suurkula M, Blomberg S, Sjovall J, Edvardsson N. Central nervous and cardiovascular effects of i.v. infusions of ropivacaine, bupivacaine and placebo in volunteers. Br J Anaesth 1997;78:507–14.PubMedCrossrefGoogle Scholar

  • [34]

    Salonen MH, Haasio J, Bachmann M, Xu M, Rosenberg PH. Evaluation of efficacy and plasma concentrations of ropivacaine in continuous axillary brachial plexus block: high dose for surgical anesthesia and low dose for postoperative analgesia. Reg Anesth Pain Med 2000;25:47–51.PubMedGoogle Scholar

  • [35]

    Stringer BW, Singhania AK, Sudhakar JE, Brink RB. Serum and wound drain ropivacaine concentrations after wound infiltration in joint arthroplasty. J Arthroplasty 2007;22:884–92.PubMedCrossrefGoogle Scholar

  • [36]

    Schoenmakers KP, Vree TB, Jack NT, van den Bemt B, van Limbeek J, Stienstra R. Pharmacokinetics of 450 mg ropivacaine with and without epinephrine for combined femoral and sciatic nerve block in lower extremity surgery. A pilot study. Br J Clin Pharmacol 2013;75:1321–7.CrossrefGoogle Scholar

  • [37]

    Wiedemann D, Muhlnickel B, Staroske E, Neumann W, Rose W. Ropivacaine plasma concentrations during 120-hour epidural infusion. Br J Anaesth 2000;85:830–5.CrossrefPubMedGoogle Scholar

  • [38]

    Hessian EC, Evans BE, Woods JA, Taylor DJ, Kinkel E, Bjorksten AR. Plasma ropivacaine concentrations during bilateral transversus abdominis plane infusions. Br J Anaesth 2013;111:488–95.PubMedCrossrefGoogle Scholar

  • [39]

    Wasudev G, Smith BE, Limbird TJ. Blood levels of bupivacaine after arthroscopy of the knee joint. Arthroscopy 1990;6:40–2.CrossrefPubMedGoogle Scholar

  • [40]

    Sullivan SG, Abbott Jr PJ. Cardiovascular toxicity associated with intraarticular bupivacaine. Anesth Analg 1994;79:591–3.PubMedGoogle Scholar

  • [41]

    Katz JA, Kaeding CS, Hill JR, Henthorn TK. The pharmacokinetics of bupivacaine when injected intra-articularly after knee arthroscopy. Anesth Analg 1988;67:872–5.PubMedGoogle Scholar

  • [42]

    Lee A, Fagan D, Lamont M, Tucker GT, Halldin M, Scott DB. Disposition kinetics of ropivacaine in humans. Anesth Analg 1989;69:736–8.PubMedGoogle Scholar

  • [43]

    Yokogawa K, Shimomura S, Ishizaki J, Shimada T, Fukuwa C, Kawada M, Tsubokawa T, Yamamoto K, Miyamoto K. Involvement of alpha1-acid glycoprotein in inter-individual variation of disposition kinetics of ropivacaine following epidural infusion in off-pump coronary artery bypass grafting. J Pharm Pharmacol 2007;59:67–73.PubMedCrossrefGoogle Scholar

  • [44]

    Kremer JM, Wilting J, Janssen LH. Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacol Rev 1988;40:1–47.PubMedGoogle Scholar

  • [45]

    Burm AG, Stienstra R, Brouwer RP, Emanuelsson BM, van Kleef JW. Epidural infusion of ropivacaine for postoperative analgesia after major orthopedic surgery: pharmacokinetic evaluation. Anesthesiology 2000;93:395–403.PubMedCrossrefGoogle Scholar

  • [46]

    Scott DA, Emanuelsson BM, Mooney PH, Cook RJ, Junestrand C. Pharmacokinetics and efficacy of long-term epidural ropivacaine infusion for postoperative analgesia. Anesth Analg 1997;85:1322–30.PubMedCrossrefGoogle Scholar

  • [47]

    Erichsen CJ, Sjovall J, Kehlet H, Hedlund C, Arvidsson T. Pharmacokinetics and analgesic effect of ropivacaine during continuous epidural infusion for postoperative pain relief. Anesthesiology 1996;84:834–42.CrossrefPubMedGoogle Scholar

  • [48]

    Wulf H, Winckler K, Maier C, Heinzow B. Pharmacokinetics and protein binding of bupivacaine in postoperative epidural analgesia. Acta Anaesthesiol Scand 1988;32:530–4.CrossrefPubMedGoogle Scholar

  • [49]

    Brocks DR, Jamali F. Clinical pharmacokinetics of ketorolac tromethamine. Clin Pharmacokinet 1992;23:415–27.PubMedCrossrefGoogle Scholar

  • [50]

    Dillane D, Finucane BT. Local anesthetic systemic toxicity. Can J Anaesth 2010;57:368–80.PubMedCrossrefGoogle Scholar

  • [51]

    Mazoit JX, Le Guen R, Beloeil H, Benhamou D. Binding of long-lasting local anesthetics to lipid emulsions. Anesthesiology 2009;110:380–6.PubMedGoogle Scholar

  • [52]

    Mizutani K, Oda Y, Sato H. Successful treatment of ropivacaine-induced central nervous system toxicity by use of lipid emulsion: effect on total and unbound plasma fractions. J Anesth 2011;25:442–5.PubMedCrossrefGoogle Scholar

  • [53]

    Weinberg GL, VadeBoncouer T, Ramaraju GA, Garcia-Amaro MF, Cwik MJ. Pre-treatment or resuscitation with a lipid infusion shifts the dose-response to bupivacaine-induced asystole in rats. Anesthesiology 1998;88:1071–5.CrossrefGoogle Scholar

  • [54]

    Rosenberg PH, Veering BT, Urmey WF. Maximum recommended doses of local anesthetics: a multifactorial concept. Reg Anesth Pain Med 2004;29:564–75 [discussion 24].PubMedGoogle Scholar

  • [55]

    Murray MD, Brater DC. Adverse effects of nonsteroidal anti-inflammatory drugs on renal function. Ann Intern Med 1990;112:559–60.PubMedCrossrefGoogle Scholar

  • [56]

    Henrich WL, Agodoa LE, Barrett B, Bennett WM, Blantz RC, Buckalew Jr VM, D’Agati VD, DeBroe ME, Duggin GG, Eknoyan G. Analgesics and the kidney: summary and recommendations to the Scientific Advisory Board of the National Kidney Foundation from an Ad Hoc Committee of the National Kidney Foundation. Am J Kidney Dis 1996;27:162–5.CrossrefPubMedGoogle Scholar

  • [57]

    Kollinius-Bringland M, Affas F, Wretenberg P. Acute renal failure after local infiltration anesthesia. Two cases related to orthopedic surgery described. Lakartidningen 2013;110:284–5.PubMedGoogle Scholar

About the article

Karolinska Institutet, Department of Physiology and Pharmacology/Karolinska Institutet Anesthesia and Intensive Care Unit F:2, Karolinska University Hospital, Solna, SE-17176 Stockholm, Sweden. Tel.:+46851772066; fax:+468307795.


Received: 2015-11-28

Revised: 2016-05-30

Accepted: 2016-05-31

Published Online: 2016-10-01

Published in Print: 2016-10-01


Conflict of interest: There is no conflict of interest.


Citation Information: Scandinavian Journal of Pain, Volume 13, Issue 1, Pages 59–66, ISSN (Online) 1877-8879, ISSN (Print) 1877-8860, DOI: https://doi.org/10.1016/j.sjpain.2016.05.041.

Export Citation

© 2016 Scandinavian Association for the Study of Pain.Get Permission

Comments (0)

Please log in or register to comment.
Log in