Jump to ContentJump to Main Navigation
Show Summary Details
More options …
New at De Gruyter

Scandinavian Journal of Pain

Official Journal of the Scandinavian Association for the Study of Pain

Editor-in-Chief: Breivik, Harald

4 Issues per year

CiteScore 2017: 0.84

SCImago Journal Rank (SJR) 2017: 0.401
Source Normalized Impact per Paper (SNIP) 2017: 0.452

See all formats and pricing
More options …

Individual variability in clinical effect and tolerability of opioid analgesics – Importance of drug interactions and pharmacogenetics

Vigdis Solhaug / Espen Molden
Published Online: 2017-12-29 | DOI: https://doi.org/10.1016/j.sjpain.2017.09.009



As pain is often a comorbid condition, many patients use opioid analgesics in combination with several other drugs. This implies a generally increased risk of drug interactions, which along with inherent pharmacogenetic variability and other factors may cause differences in therapeutic response of opioids.


To provide an overview of interactions and pharmacogenetic variability of relevance for individual differences in effect and tolerability of opioid analgesics, which physicians and other healthcare professionals should be aware of in clinical practice.


The article was based on unsystematic searches in PubMed to identify literature highlighting the clinical impact of drug interactions and pharmacogenetics as sources of variable response of opioid analgesics.


Cytochrome P450 (CYP)-mediated metabolism is an important process for both clinically relevant interactions and pharmacogenetic variability of several opioids. Concomitant use of CYP inhibitors (e.g. paroxetine, fluoxetine and bupropion) or inducers (e.g. carbamazepine, phenobarbital and phenytoin) could counteract the clinical effect or trigger side effects of analgesics in the same manner as genetically determined differences in CYP2D6-mediated metabolism of many opioids. Moreover, combination treatment with drugs that inhibit or induce P-glycoprotein (ABCB1), a blood-brain barrier efflux transporter, may alter the amount (‘dose’) of opioids distributed to the brain. At the pharmacodynamic level, it is crucial to be aware of the potential risk of interaction causing serotonergic syndrome when combining opioids and serotonergic drugs, in particular antidepressants inhibiting serotonin reuptake (SSRIs and SNRIs). Regarding pharmacogenetics at the receptor level of pain treatment, the knowledge is currently scarce, but an allelic variant of the μ1 opioid receptor (OPRM1) gene has been associated with higher dosage requirement to achieve analgesia.

Conclusions and implications

Drug interactions and pharmacogenetic differences may lead to therapeutic failure or serious side effects of opioid analgesics. Many interactions involve combinations with antidepressants and antiepileptics, which are highly relevant drugs in patients suffering from pain. To prevent unfavourable drug interactions it is important that clinicians pay close attention and use electronic drug interaction checkers when treatments are initiated or discontinued. For the management of issues related to pharmacogenetic differences, blood-based CYP genotyping is available as routine test at many laboratories, and provide a valuable tool for proper choice of drugs and doses for treatment of pain and other diseases.

Keywords: Opioids; Interactions; Pharmacogenetics; Cytochrome P450; P-glycoprotein; OPRM1


  • [1]

    Smith HS. The metabolism of opioid agents and the clinical impact of their active metabolites. ClinJ Pain 2011;27:824–38.CrossrefGoogle Scholar

  • [2]

    Nicholson AB, Watson GR, Derry S, Wiffen PJ. Methadone for cancer pain. Cochrane Database Syst Rev 2017;2.CD003971.PubMedGoogle Scholar

  • [3]

    Kringen MK, Chalabianloo F, Bernard JP, Bramness JG, Molden E, Hoiseth G. The combined effect of CYP2B6 genotype and other candidate genes on a steady-state serum concentration of methadone in opioid maintenance treatment. Ther Drug Monit 2017;39:550–5.PubMedCrossrefGoogle Scholar

  • [4]

    Crews KR, Gaedigk A, Dunnenberger HM, Leeder JS, Klein TE, Caudle KE, Haidar CE, Shen DD, Callaghan JT, Sadhasivam S, Prows CA, Kharasch ED, Skaar TC, Clinical Pharmacogenetics Implementation C. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther 2014;95:376–82.CrossrefGoogle Scholar

  • [5]

    Molden E, Spigset O. [Interactions between metoprolol and antidepressants]. Tidsskr Nors Laegeforen 2011;131:1777–9.Google Scholar

  • [6]

    Mannheimer B, von Bahr C, Pettersson H, Eliasson E. Impact of multiple inhibitors or substrates of cytochrome P450 2D6 on plasma risperidone levels in patients on polypharmacy. Ther Drug Monit 2008;30:565–9.CrossrefGoogle Scholar

  • [7]

    Abdel-Rahman SM, Marcucci K, Boge T, Gotschall RR, Kearns GL, Leeder JS. Potent inhibition of cytochrome P-450 2D6-mediated dextromethorphan O-demethylation by terbinafine. Drug Metab Dispos 1999;27:770–5.PubMedGoogle Scholar

  • [8]

    Saarikoski T, Saari TI, Hagelberg NM, Backman JT, Neuvonen PJ, Scheinin M, Olkkola KT, Laine K. Effects of terbinafine and itraconazole on the pharmacokinetics of orally administered tramadol. Eur J Clin Pharmacol 2015;71:321–7.PubMedCrossrefGoogle Scholar

  • [9]

    Coller JK, Michalakas JR, James HM, Farquharson AL, Colvill J, White JM, Somogyi AA. Inhibition of CYP2D6-mediated tramadol O-demethylation in methadone but not buprenorphine maintenance patients. Br J Clin Pharmacol 2012;74:835–41.CrossrefPubMedGoogle Scholar

  • [10]

    Vevelstad M, Pettersen S, Tallaksen C, Brors O. O-demethylation of codeine to morphine inhibited by low-dose levomepromazine. Eur J Clin Pharmacol 2009;65:795–801.PubMedCrossrefGoogle Scholar

  • [11]

    Soderberg Lofdal KC, Andersson ML, Gustafsson LL. Cytochrome P450-mediated changes in oxycodone pharmacokinetics/pharmacodynamics and their clinical implications. Drugs 2013;73:533–43.PubMedCrossrefGoogle Scholar

  • [12]

    Hiemke C, Baumann P, Bergemann N, Conca A, Dietmaier O, Egberts K, Fric M, Gerlach M, Greiner C, Grunder G, Haen E, Havemann-Reinecke U, Jaquenoud Sirot E, Kirchherr H, Laux G, Lutz UC, Messer T, Muller MJ, Pfuhlmann B, Rambeck B, Riederer P, Schoppek B, Stingl J, Uhr M, Ulrich S, Waschgler R, Zernig G. AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: update 2011. Pharmacopsychiatry 2011;44:195–235.CrossrefGoogle Scholar

  • [13]

    Nieminen TH, Hagelberg NM, Saari TI, Neuvonen M, Neuvonen PJ, Laine K, Olkkola KT. Grapefruit juice enhances the exposure to oral oxycodone. Basic Clin Pharmacol Toxicol 2010;107:782–8.CrossrefPubMedGoogle Scholar

  • [14]

    Saari TI, Laine K, Neuvonen M, Neuvonen PJ, Olkkola KT. Effect of voriconazole and fluconazole on the pharmacokinetics of intravenous fentanyl. Eur J Clin Pharmacol 2008;64:25–30.PubMedCrossrefGoogle Scholar

  • [15]

    Cronnolly B, Pegrum H. Fentanyl-clarithromycin interaction. BMJ Case Rep 2012;2012.Google Scholar

  • [16]

    Horton R, Barber C. Opioid-induced respiratory depression resulting from transdermal fentanyl-clarithromycin drug interaction in a patient with advanced COPD. J Pain Symptom Manag 2009;37:e2–5.CrossrefGoogle Scholar

  • [17]

    Mercadante S, Villari P, Ferrera P. Itraconazole-fentanyl interaction in a cancer patient. J Pain Symptom Manag 2002;24:284–6.CrossrefGoogle Scholar

  • [18]

    Hallberg P, Marten L, Wadelius M. Possible fluconazole-fentanyl interaction - a case report. Eur J Clin Pharmacol 2006;62:491–2.PubMedCrossrefGoogle Scholar

  • [19]

    Bartkowski RR, McDonnell TE. Prolonged alfentanil effect following erythromycin administration. Anesthesiology 1990;73:566–8.CrossrefPubMedGoogle Scholar

  • [20]

    Perucca E. Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol 2006;61:246–55.CrossrefPubMedGoogle Scholar

  • [21]

    Roby CA, Anderson GD, Kantor E, Dryer DA, Burstein AH. St John’s Wort: effect on CYP3A4 activity. Clin Pharmacol Ther 2000;67:451–7.PubMedCrossrefGoogle Scholar

  • [22]

    Tempelhoff R, Modica PA, SpitznagelJr EL. Anticonvulsant therapy increases fentanyl requirements during anaesthesia for craniotomy. Can J Anaesth 1990;37:327–32.PubMedCrossrefGoogle Scholar

  • [23]

    The Norwegian Medicines Agency. Summary of product characteristics (SPC), Oxycodone Actavis [last update: 03.01.17].Google Scholar

  • [24]

    Benitez-Rosario MA, Salinas Martin A, Gomez-Ontanon E, Feria M. Methadone-induced respiratory depression after discontinuing carbamazepine administration. J Pain Symptom Manag 2006;32:99–100.CrossrefGoogle Scholar

  • [25]

    Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamsterovary cell mutants. Biochim Biophys Acta 1976;455:152–62.CrossrefGoogle Scholar

  • [26]

    Drewes AM, Jensen RD, Nielsen LM, Droney J, Christrup LL, Arendt-Nielsen L, Riley J, Dahan A. Differences between opioids: pharmacological, experimental, clinical and economical perspectives. Br J Clin Pharmacol 2013;75:60–78.CrossrefGoogle Scholar

  • [27]

    Sadeque AJ, Wandel C, He H, Shah S, Wood AJ. Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther 2000;68:231–7.PubMedCrossrefGoogle Scholar

  • [28]

    Mercer SL, Coop A. Opioid analgesics and P-glycoprotein efflux transporters: a potential systems-level contribution to analgesic tolerance. Curr Top Med Chem 2011;11:1157–64.PubMedCrossrefGoogle Scholar

  • [29]

    Alhaddad H, Cisternino S, Decleves X, Tournier N, Schlatter J, Chiadmi F, Risede P, Smirnova M, Besengez C, Scherrmann JM, Baud FJ, Megarbane B. Respiratory toxicity of buprenorphine results from the blockage of P-glycoprotein-mediated efflux of norbuprenorphine at the blood-brain barrier in mice. Crit Care Med 2012;40:3215–23.PubMedCrossrefGoogle Scholar

  • [30]

    Megarbane B, Alhaddad H, Decleves X. Reduced pupil diameter in volunteers on stable buprenorphine maintenance therapy with telaprevir: a drug-drug interaction involving p-glycoprotein at the blood-brain barrier? Antimicrob Agents Chemother 2012;56:6070.PubMedGoogle Scholar

  • [31]

    McCance-Katz EF, Sullivan LE, Nallani S. Drug interactions of clinical importance among the opioids, methadone and buprenorphine, and other frequently prescribed medications: a review. AmJ Addict 2010;19:4–16.CrossrefGoogle Scholar

  • [32]

    Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Zhang Y, Laracuente ML, DeMarco KM, Ronaldson PT, Davis TP. P-glycoprotein modulates morphine uptake into the CNS: a role for the non-steroidal anti-inflammatory drug diclofenac. PLOS ONE 2014;9:e88516.CrossrefPubMedGoogle Scholar

  • [33]

    Slosky LM, Thompson BJ, Sanchez-Covarrubias L, Zhang Y, Laracuente ML, Vanderah TW, Ronaldson PT, Davis TP. Acetaminophen modulates P-glycoprotein functional expression at the blood-brain barrier by a constitutive androstane receptor-dependent mechanism. Mol Pharmacol 2013;84:774–86.CrossrefPubMedGoogle Scholar

  • [34]

    Sansone RA, Sansone LA. Tramadol: seizures, serotonin syndrome, and coadministered antidepressants. Psychiatry (Edgmont (Pa: Township)) 2009;6:17–21.PubMedGoogle Scholar

  • [35]

    Nelson EM, Philbrick AM. Avoiding serotonin syndrome: the nature of the interaction between tramadol and selective serotonin reuptake inhibitors. Ann Pharmacother 2012;46:1712–6.CrossrefPubMedGoogle Scholar

  • [36]

    Greenier E, Lukyanova V, Reede L. Serotonin syndrome: fentanyl and selective serotonin reuptake inhibitor interactions. AANA J 2014;82:340–5.PubMedGoogle Scholar

  • [37]

    Isenberg D, Wong SC, Curtis JA. Serotonin syndrome triggered by a single dose of suboxone. Am J Emerg Med 2008;26, 840.e3-5.Google Scholar

  • [38]

    Pilgrim JL, Gerostamoulos D, Drummer OH. Deaths involving serotonergic drugs. Forensic Sci Int 2010;198:110–7.CrossrefPubMedGoogle Scholar

  • [39]

    Aminiahidashti H, Shafiee S, Mousavi SJ, Hajiaghaei G. Tramadol pill alone may cause serotoninsyndrome. Chin MedJ 2016;129:877–8.CrossrefGoogle Scholar

  • [40]

    Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ. Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 2006;368:704.Google Scholar

  • [41]

    Ciszkowski C, Madadi P, Phillips MS, Lauwers AE, Koren G. Codeine, ultrarapid-metabolism genotype, and postoperative death. N Engl J Med 2009;361:827–8.CrossrefPubMedGoogle Scholar

  • [42]

    Orliaguet G, Hamza J, Couloigner V, Denoyelle F, Loriot MA, Broly F, Garabedian EN. A case of respiratory depression in a child with ultrarapid CYP2D6 metabolism after tramadol. Pediatrics 2015;135:e753–5.CrossrefGoogle Scholar

  • [43]

    Stamer UM, Stuber F, Muders T, Musshoff F. Respiratory depression with tramadol in a patient with renal impairment and CYP2D6 gene duplication. Anesth Analg 2008;107:926–9.CrossrefGoogle Scholar

  • [44]

    Gasche Y, Daali Y, Fathi M, Chiappe A, Cottini S, Dayer P, Desmeules J. Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 2004;351:2827–31.PubMedCrossrefGoogle Scholar

  • [45]

    Takashina Y, Naito T, Mino Y, Yagi T, Ohnishi K, Kawakami J. Impact of CYP3A5 and ABCB1 gene polymorphisms on fentanyl pharmacokinetics and clinical responses in cancer patients undergoing conversion to a transdermal system. Drug Metab Pharmacokinet 2012;27:414–21.CrossrefPubMedGoogle Scholar

  • [46]

    Klees TM, Sheffels P, Thummel KE, Kharasch ED. Pharmacogenetic determinants of human liver microsomal alfentanil metabolism and the role of cytochrome P450 3A5. Anesthesiology 2005;102:550–6.CrossrefGoogle Scholar

  • [47]

    De Fazio S, Gallelli L, De Siena A, De Sarro G, Scordo MG. Role of CYP3A5 in abnormal clearance of methadone. Ann Pharmacother 2008;42:893–7.CrossrefPubMedGoogle Scholar

  • [48]

    Matic M, de Wildt SN, Tibboel D, van Schaik RHN. Analgesia and opioids: a pharmacogenetics shortlist for implementation in clinical practice. Clin Chem 2017;63:1204–13.CrossrefPubMedGoogle Scholar

  • [49]

    Nielsen LM, Olesen AE, Branford R, Christrup LL, Sato H, Drewes AM. Association between human pain-related genotypes and variability in opioid analgesia: an updated review. Pain Pract 2015;15:580–94.PubMedCrossrefGoogle Scholar

  • [50]

    Kroetz DL, Pauli-Magnus C, Hodges LM, Huang CC, Kawamoto M, Johns SJ, Stryke D, Ferrin TE, DeYoung J, Taylor T, Carlson EJ, Herskowitz I, Giacomini KM, Clark AG. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics 2003;13: 481-94.PubMedCrossrefGoogle Scholar

  • [51]

    Sadhasivam S, Chidambaran V, Zhang X, Meller J, Esslinger H, Zhang K, Martin LJ, McAuliffe J. Opioid-induced respiratory depression: ABCB1 transporter pharmacogenetics. Pharmacogenomics J 2015;15:119–26.CrossrefPubMedGoogle Scholar

  • [52]

    National Center for Biotechnology Information, National Library of Medicine. Database of single nucleotide polymorphisms (dbSNP). Available from:https://www.ncbi.nlm.nih.gov/projects/SNP/ [accessed August 2017].

  • [53]

    Hwang IC, Park JY, Myung SK, Ahn HY, Fukuda K, Liao Q. OPRM1 A118G gene variant and postoperative opioid requirement: a systematic review and metaanalysis. Anesthesiology 2014;121:825–34.CrossrefGoogle Scholar

  • [54]

    Choi SW, Lam DM, Wong SS, Shiu HH, Wang AX, Cheung CW. Effects of single nucleotide polymorphisms on surgical and post-surgical opioid requirements - a systematic review and meta-analysis. Clin J Pain 2017,http://dx.doi.org/10.1097/AJP.0000000000000498.PubMed

  • [55]

    The Norwegian Medicines Agency.www.legemiddelinteraksjoner.no.

  • [56]

    Danish Medicines Agency.http://www.interaktionsdatabasen.dk/.

  • [57]

    Janusinfo, Drug Therapeutic Committee and the Health and Medical Care Administration of the Stockholm County Council, Sweden.http://www.janusinfo.se.

About the article

Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23 Vinderen, N-0319 Oslo, Norway

Received: 2017-09-08

Revised: 2017-09-11

Accepted: 2017-09-12

Published Online: 2017-12-29

Ethical issues: In line with its status as a review article, this project did not require any approval from an ethical committee.

Conflicts of interest: The authors work in a hospital department performing pharmacogenetic analyses as a public-funded service for clinicians, but have no other conflicts of interest to declare in relation to this paper.

Citation Information: Scandinavian Journal of Pain, Volume 17, Issue 1, Pages 193–200, ISSN (Online) 1877-8879, ISSN (Print) 1877-8860, DOI: https://doi.org/10.1016/j.sjpain.2017.09.009.

Export Citation

© 2017 Scandinavian Association for the Study of Pain.Get Permission

Comments (0)

Please log in or register to comment.
Log in