Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Slovenian Journal of Public Health

The Journal of National Institute of Public Health

4 Issues per year


IMPACT FACTOR 2016: 0.429

CiteScore 2016: 0.26

SCImago Journal Rank (SJR) 2016: 0.177
Source Normalized Impact per Paper (SNIP) 2016: 0.222

Open Access
Online
ISSN
1854-2476
See all formats and pricing
More options …
Volume 51, Issue 3 (Jan 2012)

Issues

The effects of particulate matter air pollution on respiratory health and on the cardiovascular system

Zala Pražnikar / Jure Pražnikar
  • Institute "Andrej Marušič", University of Primorska, Muzejski Trg 2, 6000 Koper, Slovenia Kontaktni naslov
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-06-21 | DOI: https://doi.org/10.2478/v10152-012-0022-z

The effects of particulate matter air pollution on respiratory health and on the cardiovascular system

Particulate matter (PM) is a major component of urban air pollution and has a significant effect on human health. Natural PM sources are volcanic eruptions, dust storms, forest and grassland fires, living vegetation and sea spray. Traffic, domestic heating, power plants and various industrial processes generate significant amounts of anthropogenic PM. PM consists of a complex mixture of solid and liquid particles of organic and inorganic substances suspended in the air. The chemical composition of particles is very complex and depends on emission sources, meteorological conditions and their aerodynamic diameter. Several epidemiological studies have demonstrated that exposure to PM of varying size fractions is associated with an increased risk of respiratory and cardiovascular diseases. Adverse health effects have been documented from studies of both acute and chronic exposure. The most severe effects in terms of overall health burden include a significant reduction in life expectancy by a several months for the average population, which is linked to long-term exposure to moderate concentrations of PM. Nevertheless, numerous deaths and serious cardiovascular and respiratory problems have also been attributed to short-term exposure to peak levels of PM. Although many studies attribute greater toxicity to smaller size fractions, which are able to penetrate deeper into the lung, the molecular mechanisms and the size fractions of the PM that are responsible for the observed diseases are not completely understood.

Vpliv Prašnih Delcev na Bolezni Dihal in Srčno-Žilnega Sistema

Prašni delci so eden najpogostejših onesnaževal zraka in imajo velik vpliv na zdravje ljudi. Kemijska sestava prašnih delcev je zelo zapletena in je odvisna od vira emisij, meteoroloških okoliščin in od aerodinamskega premera delcev. Naravni izvori prašnih delcev so vulkanski izbruhi, puščavski pesek, naravni požari in morska sol. Promet, domača kurišča, termoelektrarne in industrijski obrati pa so glavni vir antropogenih prašnih delcev. Prašni delci so sestavljeni iz zapletene mešanice trdnih in tekočih delcev, sestavljenih iz organskih in anorganskih snovi. Številne epidemiološke študije so pokazale, da je izpostavljenost prašnim delcem različnih velikosti povezana s povečanim tveganjem za razvoj dihalnih in srčno-žilnih obolenj. Škodljiv učinek na zdravje je bil ugotovljen na osnovi raziskav, ki so proučevale akutno, in na osnovi raziskav, ki so proučevale kronično izpostavljenost prašnim delcem. Najbolj škodljiv učinek prašnih delcev je skrajšanje življenjske dobe povprečne populacije za nekaj mesecev, kar je povezano z dolgoročno izpostavljenostjo prašnim delcem zmernih koncentracij. Kljub temu pa so vzroki za številne smrti in resne dihalne ter srčno-žilne bolezni povezane s kratkoročno izpostavljenostjo visokim koncentracijam prašnih delcev. Številne raziskave pripisujejo večje negativne učinke na zdravje ljudi manjšim prašnim delcem, ker lahko globlje prodrejo v pljuča. Kljub številnim raziskavam še ni popolnoma pojasnjeno, kateri prašni delci so ključni za povzročene neželene učinke in prek katerih molekularnih mehanizmov sprožajo neželene učinke.

Keywords: particulate matter; air pollution; respiratory diseases; cardiovascular diseases; exposure

Keywords: prašni delci; onesnaževala; bolezni dihal; bolezni srca in ožilja; izpostavljenost

  • Monn C, Shaeppi G. Concentrations of total suspended particulates, fine particles and their anionic compounds in ambient air and indoor air. Environ Technol 1993; 14: 869-875.CrossrefGoogle Scholar

  • Matsumoto K, Tanaka H. Formation and dissociation of atmospheric particulate nitrate and chloride: an approach based on phase equilibrium. Atmos Environ 1996; 30: 639-648.CrossrefGoogle Scholar

  • Matsumoto K, Naggo I, Tanaka H, Miyaji H, Iida K, Ikebe Y. Seasonal characteristics of organic and inorganic species and their size distributions in atmospheric aerosols over the northwest Pacific Ocean. Atmos Environ 1998; 32: 1931-1946.CrossrefGoogle Scholar

  • Liu S, Trainer M, Fehsenfeld FC, Parrish DD, Williams EJ, Fahey DW. et al. Ozone production in the rural troposphere and the implication for regional and global ozone distributions. J Geophys Res 1987; 92: 4191-4207.CrossrefGoogle Scholar

  • World Health Organization. Global health risks: mortality and burden of diseases attributable to selected major risks. Geneve: WHO, 2009: 23-53.Google Scholar

  • Goldberg MS, Burnett RT, Bailar JC, Tamblyn R, Ernst P, Flegel K. et al. Identification of persons with cardiorespiratory conditions who are at risk of dying from the acute effects of ambient air particles. Environ Health Perspect 2001; 109: 487-94.PubMedGoogle Scholar

  • Samoli E, Peng R, Ramsay T, Pipikou M, Touloumi G, Dominici F. et al. Acute effects of ambient particulate matter on mortality in Europe and North America: results from the APHENA study. Environ Health Perspect 2008; 116: 1480-1486.CrossrefPubMedGoogle Scholar

  • Zanobetti A, Schwartz J, Gold D. Are there sensitive subgroups for the effects of airborne particles? Environ Health Perspect 2000; 108: 841-5.CrossrefPubMedGoogle Scholar

  • Zanobetti A, Schwartz J. Cardiovascular damage by airborne particles: are diabetics more susceptible? Epidemiology 2002; 13: 588-92.PubMedCrossrefGoogle Scholar

  • Dong GH, Chen T, Liu MM, Wang D, Ma YN, Ren WH. et al. Gender differences and effect of air pollution on asthma in children with and without allergic predisposition: northeast Chinese children health study. PLoS One 2011; 6: e22470.CrossrefGoogle Scholar

  • Burr ML, Butland BK, King S, Vaughan-Williams E. Changes in asthma prevalence: two surveys 15 years apart. Arch Dis Child 1989; 64: 1452-1456.CrossrefGoogle Scholar

  • Burney PGJ. Evidence for an increase in atopic disease and possible causes. Clin Exp Allergy 1993; 23: 484-492.PubMedGoogle Scholar

  • D' amato G, Cecchi L, D' amato M, Liccardi G. Urban air pollution and climate change as environmental risk factors of respiratory allergy: an update. J Investig Allergol Clin Immunol 2010; 20: 95-102.PubMedGoogle Scholar

  • Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 2004; 364: 709-721.Google Scholar

  • Mannino DM, Watt G, Hole D, Gillis C, Hart C, McConnachie A. et al. The natural history of chronic obstructive pulmonary disease. Eur Respir J 2006; 27: 627-643.PubMedCrossrefGoogle Scholar

  • Ling SH, van Eeden SF. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease. Int J COPD 2009; 4: 233-243.Google Scholar

  • Schwartz J. Particulate air pollution and daily mortality: a synthesis. Public Health Rev 1992; 19: 39-60.Google Scholar

  • Dockery DW, Stone PH. Cardiovascular risks from fine particulate air pollution. N Engl J Med 2007; 356: 511-513.CrossrefGoogle Scholar

  • Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, Smith SC Jr., Tager I. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation 2004; 109: 2655-2671.CrossrefGoogle Scholar

  • Pope CA, III, Muhlestein JB, May HT, Renlund DG, Anderson JL, Horne BD. Ischemic Heart Disease events triggered by short-term exposure to fine particulate air pollution. Circulation 2006; 114: 2443-2448.PubMedCrossrefGoogle Scholar

  • Brook RD. Cardiovascular effects of air pollution. Clin Sci (Lond) 2008; 115: 175-187.PubMedCrossrefGoogle Scholar

  • Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME. et al. An association between air pollution and mortality in six US cities. N Engl J Med 1993; 329: 1753-1759.Google Scholar

  • Peters A, Dockery DW, Muller JE, Mittleman MA. Increased particulate air pollution and the triggering of myocardial infarction. Circulation 2001; 103: 2810-2815.CrossrefPubMedGoogle Scholar

  • Pope CA, III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002; 287: 1132-1141.Google Scholar

  • Schwartz J, Dockery DW, Neas LM. Is daily mortality associated specifically with fine particles? J Air Waste Manag Assoc 1996; 46: 927-939.Google Scholar

  • World Health Organization. Air quality and health. Geneve: WHO, 2008: 313.Google Scholar

  • Air quality framework directive. Official Journal L 1999; 163: 41-60.Google Scholar

  • Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe.Google Scholar

  • WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide-global update 2005: summary of risk assessment, Geneve: WHO, 2005.Google Scholar

  • Kerminen VM, Teinilä K, Hillamo R. Chemistry of sea-salt particles in the summer Antarctic atmosphere. Atmos Environ 2000; 34: 2817-2825.CrossrefGoogle Scholar

  • Song CH, Carmichael GR. The aging process of naturally emitted aerosol (sea-salt and mineral aerosol) during long range transport. Atmos Environ 1999; 33: 2203-2218.CrossrefGoogle Scholar

  • Corbett JJ, Fischbeck P. Emissions from ships. Science 1997; 278: 823-824.CrossrefGoogle Scholar

  • Eyring V, Köhler HW, van Aardenne J, Lauer A. Emissions from international shipping: the last 50 years. J Geophys Res 2005; 110: D17305.CrossrefGoogle Scholar

  • Main baseline scenario (CP) developed by IIASA in autumn 2004 for the Commission's CAFE programme. Available from: http://www.iiasa.ac.at/rains/cafe.html

  • Bowman F, Odum J, Pandis SN, Seinfeld JH. A new adsorption/absorption model for the formation of secondary atmospheric aerosol. Atmos Environ 1997; 31: 3921-3931.CrossrefGoogle Scholar

  • Pandis SN and Seinfeld JH. Mathematical modeling of acid deposition due to radiation fog. J Geophys Res 1989; 94: 12911-12923.CrossrefGoogle Scholar

  • Stelson AW, Friedlander SK, Seinfeld JH. Note on the equilibrium relationship between ammonia and nitric-acid and particulate ammonium-nitrate. Atmos Environ 1979; 13: 369-371.CrossrefGoogle Scholar

  • Stockwell WR, Calvert JG. The mechanism of the hydroxyl-sulfur dioxide reaction. Atmos Environ 1983; 17: 2231-2235.CrossrefGoogle Scholar

  • Trebs I, Metzger S, Meixner FX, Helas G, Hoffer A, Rudich Y. et al. The NH4+-NO3--Cl--SO42--H2O aerosol system and its gas phase precursors at a pasture site in the Amazon Basin: how relevant are mineral cations and soluble organic acids? J Geophys Res 2005: 110: 345-355.Google Scholar

  • Wexler AS, Lurmann FW, Seinfeld JH. Modeling urban and regional aerosols: model development. Atmos Environ 1994; 28: 531-546.CrossrefGoogle Scholar

  • Turpin BJ, Huntzinker JJ. Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ 1995; 29: 3527-3544.CrossrefGoogle Scholar

  • Report on WHO Working Group: health aspects of air pollution with particulate, matter ozone and nitrogen dioxide. Geneve: WHO, 2003.Google Scholar

  • Seinfeld JH, Pandis SN. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change 2006.Google Scholar

  • Lightly JS, Veranth JS, Sarofim AF. Combustion aerosols: Factors governing their size and composition and implications to human health. J Air Waste Manag Assoc 2000; 50: 1565-1618.Google Scholar

  • Brook JF, Dann TF, Burnett RT. The relationship among TSP, PM10, PM2.5, and inorganic constituents of atmospheric particulate matter at multiple Canadian locations. J Air and Waste Manag Assoc 1997; 47: 2-19.Google Scholar

  • Putaud JP, Raes F, Van Dingenen R, Brüggemann E, Facchini MC, Decesari S. et al. A European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ 2004; 38: 2579-2595.CrossrefGoogle Scholar

  • Turnbull AB, Harrison RM. Major component contributions to PM10 composition in the UK atmosphere. Atmos Environ 2000; 34: 3129-3137.Google Scholar

  • Horvath H, Kasaharat M, Pesava P. The size distribution and composition of the atmospheric aerosol at a rural and nearby urban location. J Aerosol Science 1996; 27: 417-435.CrossrefGoogle Scholar

  • Chen ML, Mao IF, Lin IK. The PM2.5 and PM10 particles in urban areas of Taiwan. Science of the Total Environment 1999; 226: 227-235.CrossrefGoogle Scholar

  • Alves LC, Reis MA, Freitas MC. Air particulate matter characterization of a rural area in Portugal. Nuclear Instruments and Methods in Physics Research B 1998; 136: 941-947.Google Scholar

  • Kuang-Ling Y. Spatial and seasonal variation of PM10 mass concentrations in Taiwan. Atmos Environ 2002; 36: 3403-3411.Google Scholar

  • van der Wal JT, Janssen LHJM. How contribute emission of PM10 and meteorology to concentrations of fine particles in the Netherlands. J Aerosol Sci 1996; 27: 681-682.Google Scholar

  • Chang KH, Jeng FT, Tsai YL, Lin PL. Modeling of long-range transport on Taiwan's acid deposition under different weather conditions. Atmos Environ 2000; 34: 3281-3295.CrossrefGoogle Scholar

  • Qin Y, Chan CK, Chan LY, 1997. Characteristics of chemical compositions of atmospheric aerosols in Hong Kong: spatial and seasonal distributions. The Sci Total Environ 1997; 206: 25-37.Google Scholar

  • Orlic I, Wen X, Ng TH, Tang SM. Two years of aerosol pollution monitoring in Singapore: a review. Nucl Instr Meth Res B 1999; 150: 457-464.Google Scholar

  • Var F, Narita Y, Tanaka S. The concentration, trend and seasonal variation of metals in the atmosphere in 16 Japanese cities shown by the results of National Air Surveillance Network (NASN) from 1974 to 1996. Atmos Environ 2000; 34; 2755-2770.CrossrefGoogle Scholar

  • Abbey DE, Nishino N, McDonnell WF, Burchette RJ, Knutsen SF, Lawrence Beeson W. et al. Long-term inhalable particles and other air pollutants related to mortality in nonsmokers. Am J Respir Crit Care Med 1999; 159: 373-82.Google Scholar

  • Brunekreef B, Forsberg B. Epidemiological evidence of effects of coarse airborne particles on health. Eur Respir J 2005; 26: 309-18.PubMedCrossrefGoogle Scholar

  • Schwartz J. Short term fluctuations in air pollution and hospital admissions of the elderly for respiratory disease. Thorax 1995; 50: 531-538.PubMedCrossrefGoogle Scholar

  • Ryan PH, LeMasters G, Biagini J, Bernstein D, Grinshpun SA, Shukla R. et al. Is it traffic type, volume or distance? wheezing in infants living near truck and bus traffic. J Allergy Clin Immunol 2005; 116: 279-284.PubMedCrossrefGoogle Scholar

  • Epton MJ, Dawson RD, Brooks WM, Kingham S, Aberkane T, Cavanagh JA. et al. The effect of ambient air pollution on respiratory health of school children; a panel study. Environ Health 2008; 14: 7-16.Google Scholar

  • Nordling E, Berglind N, Melen E, Emenius G, Hallberg J, Nyberg F. et al. Traffic-related air pollution and childhood respiratory symptoms, function and allergies. Epidemiology 2008; 19: 401-408.PubMedCrossrefGoogle Scholar

  • Van Roosbroeck S, Li R, Hoek G, Lebret E, Brunekreef B, Spiegelman D. Traffic-relatedoutdoor air pollution and respiratory symptoms in children: the impact of adjustment for exposure measurement error. Epidemiology 2008; 19: 409-416.CrossrefPubMedGoogle Scholar

  • Salvi S. Health effects of ambient air pollution in children. Paediatr Respir rev 2007; 8: 275-280.PubMedCrossrefGoogle Scholar

  • Morgenstern V, Zutavern A, Cyrys J, Brockow I, Gehring U, Koletzko S. et al. Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohorot of young children. Occup Environ Med 2007; 64: 8-16.Google Scholar

  • Gauderman WJ, Avol E, Gilliland F, Vora H, Thomas D, Berhane K. et al. The effect of air pollution on lung development from 10 to 18 years of age. N Engl J Med 2004; 351: 1057-1076.Google Scholar

  • Gauderman WJ, Vora H, McConnell R, Berhane K, Gilliland F, Thomas D. et al. Effect of exposure to traffic on lung development from 10 to 18 years of age: a cohorot study. Lancet 2007; 369: 571-577.Google Scholar

  • Sugiri D, Ranft U, Schikowski T, Kramer U. The influence of large-scale airborne particle decline and traffic-related exposure on children's lung function. Environ Health Perspect 2006; 114: 282-288.CrossrefGoogle Scholar

  • McCreanor J, Cullinan P, Nieuwenhuijsen MJ, Stewart-Evans J, Malliarou E, Jarup L. et al. Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med 2007; 357: 2348-2358.CrossrefGoogle Scholar

  • Atkinson RW, Anderson HR, Sunyer J, Ayres J, Baccini M, Vonk JM. et al. Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. Air Pollution and Health: a European approach. Am J Respir Crit Care Med 2001; 164: 1860-1866.Google Scholar

  • Polichetti G, Cocco S, Spinali A, Trimarco V, Nunziata A. Effects of particulate matter (PM(10), PM(2.5) and PM(1)) on the cardiovascular system. Toxicology 2009; 261: 1-8.Google Scholar

  • Wellenius GA, Schwartz J, Mittleman MA. Air pollution and hospital admissions for ischemic and hemorrhagic stroke among medicare beneficiaries. Stroke 2005; 36: 2549-2553.PubMedCrossrefGoogle Scholar

  • von Klot S, Peters A, Aalto P, Bellander T, Berglind N, D'Ippoliti D. et al. Ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in five European cities. Circulation 2005; 112: 3073-3079.CrossrefGoogle Scholar

  • Chang CC, Tsai SS, Ho SC, Yang CY. Air pollution and hospital admissions for cardiovascular disease in Taipei, Taiwan. Environ Res 2005; 98: 114-119.PubMedCrossrefGoogle Scholar

  • Zeka A, Zanobetti A, Schwartz J. Short term effects of particulate matter on cause specific mortality: effects of lags and modification by city characteristics. Occup Environ Med 2005; 62: 718-725.PubMedCrossrefGoogle Scholar

  • Lanki T, Pekkanen J, Aalto P, Elosua R, Berglind N, D'Ippoliti D. et al. Associations of traffic related air pollutants with hospitalisation for first acute myocardial infarction: the HEAPSS study. Occup Environ Med 2006; 63: 844-851.PubMedCrossrefGoogle Scholar

  • Ballester F, Rodriguez P, Iniguez C, Saez M, Daponte A, Galán I. et al. Air pollution and cardiovascular admissions association in Spain: results within the EMECAS project. J Epidemiol Commun Health 2006; 60: 328-336.CrossrefGoogle Scholar

  • Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, Kaufman JD. Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med 2007; 356: 447-458.CrossrefGoogle Scholar

  • Teo KK, Ounpuu S, Hawken S, Pandey MR, Valentin V, Hunt D. et al. Tobacco use and risk of myocardial infarction in 52 countries in the INTERHEART study: a case-control study. Lancet 2006; 368: 647-658.Google Scholar

  • Künzli N, Jerrett M, Mack WJ, Beckerman B, LaBree L, Gilliland F. et al. Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect 2005; 113: 201-206.PubMedGoogle Scholar

  • Hoffmann B, Moebus S, Möhlenkamp S, Stang A, Lehmann N, Dragano N. et al. Residential exposure to traffic is associated with coronary atherosclerosis. Circulation 2007; 116: 489-496.PubMedCrossrefGoogle Scholar

  • Gong HJr., Linn WS, Terrell SL, Clark KW, Geller MD, Anderson KR. et al. Altered heart-rate variability in asthmatic and healthy volunteers exposed to concentrated ambient coarse particles. Inhal Toxicol 2004; 16: 335-343.CrossrefPubMedGoogle Scholar

  • Harrabi I, Rondeau V, Dartigues JF, Tessier JF, Filleul L. Effects of particulate air pollution on systolic blood pressure: a population-based approach. Environ Res 2006; 101: 89-93.CrossrefPubMedGoogle Scholar

  • Kettunen J, Lanki T, Tiittanen P, Aalto PP, Koskentalo T, Kulmala M. et al. Associations of fine and ultrafine particulate air pollution with stroke mortality in an area of low air pollution levels. Stroke 2007; 38: 918-922.CrossrefGoogle Scholar

  • Gilmour PS, Morrison ER, Vickers MA, Ford I, Ludlam CA, Greaves M. et al. The procoagulant potential of environmental particles (PM10). Occup Environ Med 2005; 62: 164-171.PubMedGoogle Scholar

  • Baccarelli A, Martinelli I, Zanobetti A, Grillo P, Hou LF, Bertazzi PA. et al. Exposure to particulate air pollution and risk of deep vein thrombosis. Arch Intern Med 2008; 168: 920-927.PubMedCrossrefGoogle Scholar

  • Mutlu GM, Green D, Bellmeyer A, Baker CM, Burgess Z, Rajamannan N. et al. Ambient particulate matter accelerates coagulation via an IL-6-dependent pathway. J Clin Invest 2007; 117: 2952-2961.Google Scholar

  • Schicker B, Kuhn M, Fehr R, Asmis LM, Karagiannidis C, Reinhart WH. Particulate matter inhalation during hay storing activity induces systemic inflammation and platelet aggregation. Eur J Appl Physiol 2009; 105: 771-778.CrossrefPubMedGoogle Scholar

  • Cozzi E, Wingard CJ, Cascio WE, Devlin RB, Miles JJ, Bofferding AR. et al. Effect of ambient particulate matter exposure on hemostasis. Trans Res 2007; 149: 324-332.Google Scholar

  • Chuang KJ, Chan CC, Su TC, Lee CT, Tang CS. The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. Am J Respir Crit Care Med 2007; 176: 370-376.PubMedCrossrefGoogle Scholar

  • Schwartz J. Particulate air pollution and daily mortality: a synthesis. Public Health Rev 1992; 19: 39-60.Google Scholar

  • Katsouyanni K, Samet JM, Anderson HR, Atkinson R, Le Tertre A, Medina S. et al. HEI Health Review Committee. Air pollution and health: a European and North American approach (APHENA). Res Rep Health Eff Inst 2009; 142: 5-90.Google Scholar

  • Medina, Plasencia A, Ballester F, Mücke HG, Schwartz J, Apheis Group. Apheis: public health impact of PM10 in 19 European cities. J Epidemiol Commun Health 2004; 58: 831-836.CrossrefGoogle Scholar

  • Medina S, Le Tertre A, Saklad M, on behalf of the Apheis Collaborative Network. The Apheis project: air pollution and health - a European information system. Air Qual Atmos Health 2009; 2:185-198.CrossrefGoogle Scholar

  • Pope CA, III, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D. et al. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation 2004; 109: 71-77.PubMedGoogle Scholar

  • Cohen AJ, Ross Anderson H, Ostro B, Pandey KD, Krzyzanowski M, Kunzli N. et al. The global burden of disease due to outdoor air pollution. J Toxicol Environ Health 2005; 68: 1301-1307.CrossrefGoogle Scholar

  • Stuart BO. Deposition and clearance of inhaled particles. Environ Health Perspect 1976; 16: 41-53.CrossrefPubMedGoogle Scholar

  • Kendall M, Tetley TD, Wigzell E, Hutton B, Nieuwenhuijsen M, Luckham P. Lung lining liquid modifies PM(2.5) in favor of particle aggregation: a protective mechanism. Am J Physiol Lung Cell Mol Physiol 2002; 282: 109-114.Google Scholar

  • Schurch S, Gehr P, Im Hof V, Geiser M, Green F. Surfactant displaces particles toward the epithelium in airways and alveoli. Respir Physiol 1990; 80: 17-32.CrossrefPubMedGoogle Scholar

  • Oberdorster G, Ferin J, Gelein R, Soderholm SC, Finkelstein J. Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environ Health Perspect 1992; 97: 193-199.PubMedGoogle Scholar

  • Li XY, Gilmour PS, Donaldson K, MacNee W. Free radical activity and pro-inflammatory effects of particulate air pollution (PM10) in vivo and in vitro. Thorax 1996; 51: 1216-1222.PubMedGoogle Scholar

  • van Eeden SF, Yeung A, Quinlam K, Hogg JC. Systemic response to ambient particulate matter: relevance to chronic obstructive pulmonary disease. Proc Am Thorac Soc 2005; 2: 61-67.PubMedCrossrefGoogle Scholar

  • Fujii T, Hayashi S, Hogg JC, Mukae H, Suwa T, Goto Y. et al. Interaction of alveolar macrophages and airway epithelial cells following exposure to particulate matter produces mediators that stimulate the bone marrow. Am J Respir Cell Mol Biol 2002; 27: 34-41.PubMedCrossrefGoogle Scholar

  • Fujii T, Hayashi S, Hogg JC, Vincent R, Van Eeden SF. Particulate matter induces cytokine expression in human bronchial epithelial cells. Am J Respir Cell Mol Biol 2001; 25: 265-271.PubMedCrossrefGoogle Scholar

  • Gilmour PS, Rahman I, Hayashi S, Hogg JC, Donaldson K, MacNee W. Adenoviral E1A primes alveolar epithelial cells to PM(10)-induced transcription of interleukin-8. Am J Physiol Lung Cell Mol Physiol 2001; 281: 598-606.Google Scholar

  • Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113: 823-839.CrossrefPubMedGoogle Scholar

  • Araujo JA, Barajas B, Kleinman M, Wang X, Bennett BJ, Gong KW. et al. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ Res 2008; 102: 589-596.CrossrefPubMedGoogle Scholar

  • Araujo JA, Nel AE. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Par Fibre Toxicol 2009; 6: 24.Google Scholar

  • Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PH, Verbruggen A, Nemery B. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 2001; 164: 1665-1668.CrossrefPubMedGoogle Scholar

  • Nemmar A, Hoet PHM, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF. et al. Passage of inhaled particles into the blood circulation in humans. Circulation 2002; 105: 411-414.PubMedCrossrefGoogle Scholar

  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 2004; 16: 437-445.PubMedCrossrefGoogle Scholar

  • Peters A, Veronesi B, Calderòn-Garciduenas L, Gehr P, Chen LC, Geiser M. et al. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol 2006; 3: 13.Google Scholar

  • Wiebert P, Sanchez-Crespo A, Seitz J, Falk R, Philipson K, Kreyling WG. et al. Negligible clearance of ultrafine particles retained in healthy and affected human lungs. Eur Respir J 2006; 28: 286-290.CrossrefPubMedGoogle Scholar

  • Wiebert P, Sanchez-Crespo A, Falk R, Philipson K, Lundin A, Larsson S. et al. No significant translocation of inhaled 35-nm carbon particles to the circulation in humans. Inhal Toxicol 2006; 18: 741-747.CrossrefGoogle Scholar

  • Möller W, Felten K, Sommerer K, Scheuch G, Meyer G, Meyer P. et al. Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am J Respir Crit Care Med 2008; 177: 426-432.CrossrefPubMedGoogle Scholar

  • Seaton A, MacNee W, Donaldson K, Godden D. Particulate air pollution and acute health effects. Lancet 1995; 345: 176-178.Google Scholar

  • Li C, Liu H, Sun Y, Wang H, Guo F, Rao S. et al. PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. J Mol Cell Biol 2009; 1: 37-45.Google Scholar

About the article


Published Online: 2012-06-21

Published in Print: 2012-01-01


Citation Information: Slovenian Journal of Public Health, ISSN (Online) 1854-2476, ISSN (Print) 0351-0026, DOI: https://doi.org/10.2478/v10152-012-0022-z.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xian Huang, Raghu Betha, Li Yun Tan, and Rajasekhar Balasubramanian
Atmospheric Environment, 2016, Volume 125, Page 505

Comments (0)

Please log in or register to comment.
Log in