Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studies in Logic, Grammar and Rhetoric

The Journal of University of Bialystok

4 Issues per year


Cite Score 2016: 0.26

SCImago Journal Rank (SJR) 2015: 0.166
Source Normalized Impact per Paper (SNIP) 2015: 0.275

Open Access
Online
ISSN
2199-6059
See all formats and pricing
More options …

Unification Strategies in Cognitive Science

Marcin Miłkowski
Published Online: 2017-03-16 | DOI: https://doi.org/10.1515/slgr-2016-0053

Abstract

Cognitive science is an interdisciplinary conglomerate of various research fields and disciplines, which increases the risk of fragmentation of cognitive theories. However, while most previous work has focused on theoretical integration, some kinds of integration may turn out to be monstrous, or result in superficially lumped and unrelated bodies of knowledge. In this paper, I distinguish theoretical integration from theoretical unification, and propose some analyses of theoretical unification dimensions. Moreover, two research strategies that are supposed to lead to unification are analyzed in terms of the mechanistic account of explanation. Finally, I argue that theoretical unification is not an absolute requirement from the mechanistic perspective, and that strategies aiming at unification may be premature in fields where there are multiple conflicting explanatory models.

Keywords: cognitive science; unification; integration; simplicity; invariance; monstrosity

References

  • Anderson, J. R. (2007). How Can the Mind Occur in the Physical Universe? Oxford: Oxford University Press.Google Scholar

  • Arbib, M. A. (2005). From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics. Behavioral and Brain Sciences, 28(2), 105-24-67. https://doi.org/10.1017/S0140525X05000038CrossrefGoogle Scholar

  • Arbib, M. A. (2012). How the brain got language: the mirror system hypothesis. New York: Oxford University Press.Google Scholar

  • Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417-423. https://doi.org/10.1016/S1364-6613(00)01538-2CrossrefGoogle Scholar

  • Baddeley, A. D., & Hitch, G. (1974). Working Memory. In G. H. Bower (Ed.), Psychology of Learning and Motivation (Vol. 8, pp. 47-89). New York / San Francisco / London: Academic Press. https://doi.org/10.1016/S0079-7421(08)60452-1CrossrefGoogle Scholar

  • Bechtel, W. (1986). The Nature of Scientific Integration. In W. Bechtel (Ed.), Integrating Scientific Disciplines (pp. 3-52). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-010-9435-1 1CrossrefGoogle Scholar

  • Bechtel, W. (2008). Mental Mechanisms. New York: Routledge (Taylor & Francis Group).Google Scholar

  • Bechtel, W. (2016). Investigating neural representations: the tale of place cells. Synthese, 193(5), 1287-1321. https://doi.org/10.1007/s11229-014-0480-8CrossrefGoogle Scholar

  • Bechtel, W., & McCauley, R. N. (1999). Heuristic identity theory (or back to the future): The mind-body problem against the background of research strategies in cognitive neuroscience. In Proceedings of the 21st Annual Meeting of the Cognitive Science Society (pp. 67-72). Mahwah, NJ: Erlbaum.Google Scholar

  • Benhamou, S. (1996). No evidence for cognitive mapping in rats. Animal Behaviour, 52(1), 201-212.CrossrefGoogle Scholar

  • Bickle, J. (1998). Psychoneural reduction the new wave. Cambridge, Mass.: MIT Press.Google Scholar

  • Boone,W., & Piccinini, G. (2015). The cognitive neuroscience revolution. Synthese. https://doi.org/10.1007/s11229-015-0783-4CrossrefGoogle Scholar

  • Busemeyer, J. R., & Diederich, A. (2010). Cognitive modeling. Los Angeles: Sage.Google Scholar

  • Byrne, M. D. (2012). Unified theories of cognition.Wiley Interdisciplinary Reviews: Cognitive Science, 3(4), 431-438. https://doi.org/10.1002/wcs.1180CrossrefGoogle Scholar

  • Chaitin, G. J. (1987). Algorithmic information theory. Cambridge [Cambridgeshire]; New York: Cambridge University Press.Google Scholar

  • Churchland, P. M. (1985). Reduction, qualia, and the direct introspection of brain states. The Journal of Philosophy, 82(1), 8-28.CrossrefGoogle Scholar

  • Clark, A. (2013).Whatever next? Predictive brains, situated agents, and the future of cognitive science. The Behavioral and Brain Sciences, 36(3), 181-204. https://doi.org/10.1017/S0140525X12000477CrossrefGoogle Scholar

  • Clark, A. (2016). Surfing uncertainty: prediction, action, and the embodied mind.Google Scholar

  • Cooper, R. P. (2007). The Role of Falsification in the Development of Cognitive Architectures: Insights from a Lakatosian Analysis. Cognitive Science, 31(3), 509-533. https://doi.org/10.1080/15326900701326592CrossrefGoogle Scholar

  • Cosmides, L., & Tooby, J. (1987). From Evolution to Behavior: Evolutionary Psychology as the Missing Link. In J. Dupre (Ed.), The Latest on the Best. Essays on Evolution and Optimality (pp. 277-303). Cambridge, Mass.: MIT Press.Google Scholar

  • Craver, C. F. (2002). Interlevel experiments and multilevel mechanisms in the neuroscience of memory. Philosophy of Science, 69(S3), 83-97.Google Scholar

  • Craver, C. F. (2007a). Explaining the Brain. Mechanisms and the mosaic unity of neuroscience. Oxford: Oxford University Press.Google Scholar

  • Craver, C. F. (2007b). Explaining the Brain. Mechanisms and the mosaic unity of neuroscience. Oxford: Oxford University Press.Google Scholar

  • Craver, C. F., & Darden, L. (2013). In search of mechanisms: discoveries across the life sciences.Google Scholar

  • Cummins, R. (1984). Functional analysis. Conceptual Issues in Evolutionary Biology: An Anthology.Google Scholar

  • Cummins, R. (2000). “How does it work” versus “what are the laws?”: Two conceptions of psychological explanation. In F. Keil & R. A. Wilson (Eds.), Explanation and Cognition (pp. 117-145). Cambridge, Mass.: MIT Press.Google Scholar

  • Danks, D. (2014). Unifying the mind: cognitive representations as graphical models. Cambridge, Mass.: MIT Press.Google Scholar

  • Darden, L., & Maull, N. (1977). Interfield Theories. Philosophy of Science, 44(1), 43-64.Google Scholar

  • Dawson, M. (1998). Understanding cognitive science. Malden Mass.: Blackwell.Google Scholar

  • Derdikman, D., & Moser, E. I. (2010). A manifold of spatial maps in the brain. Trends in Cognitive Sciences, 14(12), 561-9. https://doi.org/10.1016/j.tics.2010.09.004CrossrefGoogle Scholar

  • di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91(1), 176-80.Google Scholar

  • Eliasmith, C. (2013). How to build the brain: a neural architecture for biological cognition. New York: Oxford University Press.Google Scholar

  • Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., ... Rasmussen, D. (2012). A Large-Scale Model of the Functioning Brain. Science, 338(6111), 1202-1205. https://doi.org/10.1126/science.1225266CrossrefGoogle Scholar

  • Fodor, J. A. (1968). Psychological explanation: an introduction to the philosophy of psychology. New York: Random House.Google Scholar

  • Forster, M., & Sober, E. (1994). How to Tell When Simpler, More Unified, or Less Ad Hoc Theories will Provide More Accurate Predictions. The British Journal for the Philosophy of Science, 45(1), 1-35. https://doi.org/10.1093/bjps/45.1.1CrossrefGoogle Scholar

  • Gallese, V. (2003). The Roots of Empathy: The Shared Manifold Hypothesis and the Neural Basis of Intersubjectivity. Psychopathology, 36(4), 171-180. https://doi.org/10.1159/000072786CrossrefGoogle Scholar

  • Glennan, S. S. (2002). Rethinking Mechanistic Explanation. Philosophy of Science, 69(S3), S342-S353. https://doi.org/10.1086/341857CrossrefGoogle Scholar

  • Goodman, N. (1961). Safety, Strength, Simplicity. Philosophy of Science, 28(2), 150-151. https://doi.org/10.1086/287795CrossrefGoogle Scholar

  • Hempel, C., & Oppenheim, P. (1948). Studies in the Logic of Explanation. Philosophy of Science, 15(2), 135-175.Google Scholar

  • Hensel, W. M. (2013). On Reduction and Interfield Integration in Neuroscience. In M. Miłkowski & K. Talmont-Kamiński (Eds.), Regarding the Mind, Naturally: Naturalist Approaches to the Sciences of the Mental (pp. 167-181). Newcastle upon Tyne: Cambridge Scholars Publishing.Google Scholar

  • Hickok, G. (2014). The myth of mirror neurons: the real neuroscience of communication and cognition. New York: WW Norton.Google Scholar

  • Hochstein, E. (2015). One mechanism, many models: a distributed theory of mechanistic explanation. Synthese. https://doi.org/10.1007/s11229-015-0844-8CrossrefGoogle Scholar

  • Hooker, C. A. (1981a). Towards a General Theory of Reduction. Part I: Historical and Scientific Setting. Dialogue, 20(1), 38-59. https://doi.org/10.1017/S0012217300023088CrossrefGoogle Scholar

  • Hooker, C. A. (1981b). Towards a General Theory of Reduction. Part II: Identity in Reduction. Dialogue, 20(2), 201-236. https://doi.org/10.1017/S0012217300023301CrossrefGoogle Scholar

  • Hooker, C. A. (1981c). Towards a General Theory of Reduction. Part III: Cross- Categorical Reduction. Dialogue, 20(3), 496-529. https://doi.org/10.1017/S0012217300023593CrossrefGoogle Scholar

  • Hora, J., & Campos, P. (2015). A review of performance criteria to validate simulation models. Expert Systems, 32(5), 578-595. https://doi.org/10.1111/exsy.12111CrossrefGoogle Scholar

  • Kitcher, P. (1989). Explanatory Unification and the Causal Structure of the World. In P. Kitcher & W. C. Salmon (Eds.), Scientific Explanation (Vol. 505, pp. 410-505). Minneapolis: University of Minnesota Press.Google Scholar

  • Kohler, E., Keysers, C., Umiltà, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: action representation in mirror neurons. Science (New York, N.Y.), 297(5582), 846-8. https://doi.org/10.1126/science.1070311CrossrefGoogle Scholar

  • Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). SOAR: An architecture for general intelligence. Artificial Intelligence, 33(1), 1-64. https://doi.org/10.1016/0004-3702(87)90050-6CrossrefGoogle Scholar

  • Li, M., & Vitanyi, P. (1993). An Introduction to Kolmogorov Complexity and Its Applications. New York, Berlin, Heidelberg: Springer-Verlag.Google Scholar

  • McCulloch, W. S., & Pitts, W. (1943). A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics, 5, 115-133.CrossrefGoogle Scholar

  • Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., ... Montesano, L. (2010). The iCub humanoid robot: An open-systems platform for research in cognitive development. Neural Networks, 23(8), 1125-1134. https://doi.org/10.1016/j.neunet.2010.08.010CrossrefGoogle Scholar

  • Miłkowski,M. (2013). Explaining the Computational Mind. Cambridge,Mass.:MIT Press.Google Scholar

  • Morse, A. F., Herrera, C., Clowes, R., Montebelli, A., & Ziemke, T. (2011). The role of robotic modelling in cognitive science. New Ideas in Psychology, 29(3), 312-324. https://doi.org/10.1016/j.newideapsych.2011.02.001CrossrefGoogle Scholar

  • Mouras, H., Stol´eru, S., Moulier, V., P´el´egrini-Issac, M., Rouxel, R., Grandjean, B., ... Bittoun, J. (2008). Activation of mirror-neuron system by erotic video clips predicts degree of induced erection: an fMRI study. NeuroImage, 42, 1142-1150. https://doi.org/10.1016/j.neuroimage.2008.05.051CrossrefGoogle Scholar

  • Newell, A. (1973). You can’t play 20 questions with nature and win: Projective comments on the papers of this symposium. In W. G. Chase (Ed.), Visual information processing (pp. 283-308). New York: Academic Press.Google Scholar

  • Newell, A. (1990). Unified Theories of Cognition. Cambridge, Mass. and London: Harvard University Press.Google Scholar

  • O’Reilly, R. C., & Munakata, Y. (2000). Computational Explorations in Cognitive Neuroscience. Understanding the Mind by Simulating the Brain. Cambridge, Mass.: MIT Press.Google Scholar

  • Piccinini, G., & Craver, C. F. (2011). Integrating psychology and neuroscience: functional analyses as mechanism sketches. Synthese, 183(3), 283-311. https://doi.org/10.1007/s11229-011-9898-4CrossrefGoogle Scholar

  • Ponseti, J., Bosinski, H. A., Wolff, S., Peller, M., Jansen, O., Mehdorn, H. M., ... Siebner, H. R. (2006). A functional endophenotype for sexual orientation in humans. NeuroImage, 33(3), 825-833. https://doi.org/10.1016/j.neuroimage.2006.08.002CrossrefGoogle Scholar

  • Popper, K. R. (1959). The logic of scientific discovery. New Yorker, The. Hutchinson.Google Scholar

  • Quine, W. V. (1948). On What There Is. The Review of Metaphysics, 2(5), 21-38.Google Scholar

  • Ramón y Cajal, S. (1990). New ideas on the structure of the nervous system in man and vertebrates. (L. W. Swanson, Trans.). Cambridge, Mass.: MIT Press.Google Scholar

  • Richardson, R. C. (2007). Evolutionary Psychology as Maladapted Psychology. Cambridge, Mass.: MIT Press.Google Scholar

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169-92. https://doi.org/10.1146/annurev.neuro.27.070203.144230CrossrefGoogle Scholar

  • Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory testing. Psychological Review, 107(2), 358.CrossrefGoogle Scholar

  • Salmon, W. C. (1998). Causality and explanation. Oxford University Press, USA.Google Scholar

  • Schaffner, K. F. (1993). Discovery and explanation in biology and medicine. Chicago: University of Chicago Press.Google Scholar

  • Schurz, G. (1991). Relevant Deduction: From Solving Paradoxes Towards a General Theory. Erkenntnis, 35, 391-437. https://doi.org/10.1007/BF00388295CrossrefGoogle Scholar

  • Thagard, P. (2000). Coherence in thought and action. Cambridge, Mass.: MIT Press.Google Scholar

  • Thagard, P. (2007). Coherence, Truth, and the Development of Scientific Knowledge. Philosophy of Science, 74, 28-47.Google Scholar

  • Van Orden, G. C., & Kloos, H. (2003). The Module Mistake. Cortex, 39(1), 164-166. https://doi.org/10.1016/S0010-9452(08)70092-3CrossrefGoogle Scholar

  • Votsis, I. (2015). Unification: Not Just a Thing of Beauty. THEORIA. An International Journal for Theory, History and Foundations of Science, 30(1), 97. https://doi.org/10.1387/theoria.12695CrossrefGoogle Scholar

  • Weisberg, M. (2006). Robustness Analysis. Philosophy of Science, 73(5), 730-742. https://doi.org/10.1086/518628CrossrefGoogle Scholar

  • Zenil, H. (2010). Compression-based investigation of the dynamical properties of cellular automata and other systems. Journal of Complex Systems, 19(1).Google Scholar

About the article

Published Online: 2017-03-16

Published in Print: 2016-12-01


Citation Information: Studies in Logic, Grammar and Rhetoric, Volume 48, Issue 1, Pages 13–33, ISSN (Online) 2199-6059, DOI: https://doi.org/10.1515/slgr-2016-0053.

Export Citation

© Studies in Logic, Grammar and Rhetoric. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in