Jump to ContentJump to Main Navigation
Show Summary Details

Studies in Nonlinear Dynamics & Econometrics

Ed. by Mizrach, Bruce

IMPACT FACTOR increased in 2015: 0.517
5-year IMPACT FACTOR: 0.628

SCImago Journal Rank (SJR) 2015: 0.426
Source Normalized Impact per Paper (SNIP) 2015: 0.546
Impact per Publication (IPP) 2015: 0.419

Mathematical Citation Quotient (MCQ) 2015: 0.01

99,00 € / $149.00 / £75.00*

See all formats and pricing


Select Volume and Issue


30,00 € / $42.00 / £23.00

Get Access to Full Text

The Identification of Spurious Lyapunov Exponents in Jacobian Algorithms

Ramazan Gencay1 / W. Davis Dechert2

1Department of Economics, Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario, Canada, gencay@uwin

2Department of Economics, University of Houston, Houston, Texas, USA,

Citation Information: Studies in Nonlinear Dynamics & Econometrics. Volume 1, Issue 3, ISSN (Online) 1558-3708, DOI: 10.2202/1558-3708.1018, October 1996

Publication History

Published Online:

This article offers supplementary material which is provided at the end of the article.

The method of reconstructing an n-dimensional system from observations is to form vectors of m consecutive observations, which for m 2n, is generically an embedding. This is Takens's result. The Jacobian methods for Lyapunov exponents utilize a function of m variables to model the data, and the Jacobian matrix is constructed at each point in the orbit of the data. When embedding occurs at dimension m = n, the Lyapunov exponents of the reconstructed dynamics are the Lyapunov exponents of the original dynamics. However, if embedding only occurs for an m > n, then the Jacobian method yields m Lyapunov exponents, only n of which are the Lyapunov exponents of the original system. The problem is that as currently used, the Jacobian method is applied to the full m-dimensional space of the reconstruction, and not just to the n-dimensional manifold that is the image of the embedding map. Our examples show that it is possible to obtain spurious Lyapunov exponents that are even larger than the largest Lyapunov exponent of the original system.

Keywords: Lyapunov exponents; embedded dynamics

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Mototsugu Shintani and Oliver Linton
Journal of Econometrics, 2004, Volume 120, Number 1, Page 1
Fernando Fernández-Rodríguez, Simón Sosvilla-Rivero, and Julián Andrada-Félix
Journal of Applied Econometrics, 2005, Volume 20, Number 7, Page 911

Comments (0)

Please log in or register to comment.