Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studies in Nonlinear Dynamics & Econometrics

Ed. by Mizrach, Bruce

5 Issues per year


IMPACT FACTOR 2017: 0.855

CiteScore 2017: 0.76

SCImago Journal Rank (SJR) 2017: 0.668
Source Normalized Impact per Paper (SNIP) 2017: 0.894

Mathematical Citation Quotient (MCQ) 2017: 0.02

Online
ISSN
1558-3708
See all formats and pricing
More options …
Volume 22, Issue 3

Issues

Regime switching with structural breaks in output convergence

Fuat C. Beylunioğlu / Thanasis Stengos / M. Ege Yazgan
Published Online: 2018-02-08 | DOI: https://doi.org/10.1515/snde-2017-0043

Abstract

In this paper, we examine empirically GDP per capita convergence using an approach that explicitly allows for regime switching in the long memory parameter d within the context of a Markov Switching (MS)–ARFIMA framework. As existing methods used in the estimation of standard MS models, such as the EM algorithm are no longer appropriate, we will make use of the Viterbi algorithm to estimate the long memory MS model used by Tsay and Härdle (Tsay, W.-J., and W. K. Härdle. 2009. “A Generalized Arfima Process with Markov-Switching Fractional Differencing Parameter.” Journal of Statistical Computation and Simulation 79: 731–745.). We will classify the output gap series into two regimes, a high d and a low d regime, where a high d close to unity would imply persistence and lack of convergence. By examining the path of d parameter over time which enables us to observe non-convergent behavior in more detail, we find that converging behavior is diminishing over time and divergence is the dominant force.

This article offers supplementary material which is provided at the end of the article.

Keywords: long memory; Markov switching; output convergence; structural breaks; Viterbi algorithm

JEL Classification: C1; C2; O1; O4

References

  • Azariadis, C. 1996. “The Economics of Poverty Traps Part One: Complete Markets.” Journal of Economic Growth 1: 449–486.CrossrefGoogle Scholar

  • Azariadis, C., and A. Drazen. 1990. “Threshold Externalities in Economic Development.” The Quarterly Journal of Economics 105: 501–526.CrossrefGoogle Scholar

  • Bernard, A. B., and S. N. Durlauf. 1995. “Convergence in International Output.” Journal of Applied Econometrics 10: 97–108.Web of ScienceCrossrefGoogle Scholar

  • Bernard, A., and S. Durlauf. 1996. “Interpreting Tests of the Convergence Hypothesis.” Journal of Econometrics 71: 161–173.CrossrefGoogle Scholar

  • Diebold, F. X., and A. Inoue. 2001. “Long Memory and Regime Switching.” Journal of Econometrics 105: 131–159.CrossrefGoogle Scholar

  • Dufrénot, G., V. Mignon, and T. Naccache. 2012. “Testing Catching-Up Between the Developing Countries: “growth resistance” and sometimes “growth tragedy”.” Bulletin of Economic Research 64: 470–508.CrossrefWeb of ScienceGoogle Scholar

  • Durlauf, S. N., P. A. Johnson, and J. R. Temple. 2005. “Growth Econometrics.” Handbook of Economic Growth 1: 555–677.Google Scholar

  • Haldrup, N., and M. Nielsen. 2006. “A Regime Switching Long Memory Model for Electricity Prices.” Journal of Econometrics 135: 349–376.CrossrefGoogle Scholar

  • Hamilton, J. D.. 1989. “A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle.” Econometrica: Journal of the Econometric Society 57: 357–384.CrossrefGoogle Scholar

  • Johnson, P., and C. Papageorgiou. 2017. “What Remains of Cross-Country Convergence?” Journal of Economic Literature. forthcoming.Google Scholar

  • Kerekes, M. 2012. “Growth Miracles and Failures in a Markov Switching Classification Model of Growth.” Journal of Development Economics 98: 167–177.CrossrefWeb of ScienceGoogle Scholar

  • Li, Q., and D. Papell. 1999. “Convergence of International Output Time Series Evidence for 16 OECD Countries.” International Review of Economics & Finance 8: 267–280.CrossrefGoogle Scholar

  • Michelacci, C., and P. Zaffaroni. 2000. “(Fractional) Beta Convergence.” Journal of Monetary Economics 45: 129–153.CrossrefGoogle Scholar

  • Özkan, H., T. Stengos, and E. Yazgan. 2017. “Markov Regime Switching in Mean and in Fractional Integration Parameter.” Communications in Statistics-Simulation and Computation 46: 6974–6981.CrossrefWeb of ScienceGoogle Scholar

  • Perron, P. 2006. “Dealing with Structural Breaks.” Palgrave Handbook of Econometrics 1: 278–352.Google Scholar

  • Pesaran, H. M. 2007. “A Pair-Wise Approach to Testing for Output and Growth Convergence.” Journal of Econometrics 138: 312–355.CrossrefWeb of ScienceGoogle Scholar

  • Phillips, P. C., and D. Sul. 2007a. “Some Empirics on Economic Growth Under Heterogeneous Technology.” Journal of Macroeconomics 29: 455–469.CrossrefGoogle Scholar

  • Phillips, P. C., and D. Sul. 2007b. “Transition Modeling and Econometric Convergence Tests.” Econometrica 75: 1771–1855.Web of ScienceCrossrefGoogle Scholar

  • Romer, P. M. 1994. “The Origins of Endogenous Growth.” The Journal of Economic Perspectives 8: 3–22.CrossrefGoogle Scholar

  • Stengos, T., B. S. Thompson, and X. Wu. 2009. “The Evolution of the Conditional Joint Distribution of Life Expectancy and Per Capita Income Growth.” In: Nonparametric Econometric Methods, Advances in Econometrics: Vol. 25, edited by Q. Li, and J. S. Racine, 171–191. Bingley, United Kingdom: Emerald Group Publishing Limited.Google Scholar

  • Stengos, T., and M. Yazgan. 2014a. “Persistence in Real Exchange Rate Convergence.” Studies in Nonlinear Dynamics and Econometrics 18: 73–88.Web of ScienceGoogle Scholar

  • Stengos, T., and M. E. Yazgan. 2014b. “Persistence in Convergence.” Macroeconomic Dynamics 18: 753–782.Web of ScienceCrossrefGoogle Scholar

  • Tsay, W.-J., and W. K. Härdle. 2009. “A Generalized Arfima Process with Markov-Switching Fractional Differencing Parameter.” Journal of Statistical Computation and Simulation 79: 731–745.CrossrefWeb of ScienceGoogle Scholar

  • Viterbi, A. 1967. “Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm.” IEEE Transactions on Information Theory 13: 260–269.CrossrefGoogle Scholar

  • Wu, X., A. Savvides, and T. Stengos. 2014. “The Global Joint Distribution of Income and Health.” In Recent Advances in Estimating Nonlinear Models, edited by J. Ma and M. E. Wohar, 249–279. New York: Springer.Google Scholar

About the article

Published Online: 2018-02-08


Citation Information: Studies in Nonlinear Dynamics & Econometrics, Volume 22, Issue 3, 20170043, ISSN (Online) 1558-3708, DOI: https://doi.org/10.1515/snde-2017-0043.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Fuat C. Beylunioğlu, M. Ege Yazgan, and Thanasis Stengos
Macroeconomic Dynamics, 2018, Page 1

Comments (0)

Please log in or register to comment.
Log in