Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studies in Nonlinear Dynamics & Econometrics

Ed. by Mizrach, Bruce


IMPACT FACTOR 2018: 0.448
5-years IMPACT FACTOR: 0.877

CiteScore 2018: 0.85

SCImago Journal Rank (SJR) 2018: 0.552
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Mathematical Citation Quotient (MCQ) 2018: 0.07

Online
ISSN
1558-3708
See all formats and pricing
More options …
Volume 24, Issue 1

Issues

Volume 24 (2020)

Markov regime-switching autoregressive model with tempered stable distribution: simulation evidence

Lingbing FengORCID iD: https://orcid.org/0000-0002-7157-3792
  • Institute of Industrial Economics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi, China
  • International Institute for Financial Studies, Jiangxi University of Finance and Economics, Nanchang, Jiangxi, China
  • orcid.org/0000-0002-7157-3792
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yanlin Shi
  • Corresponding author
  • Department of Actuarial Studies and Business Analytics, Macquarie University, NSW 2109, Australia, Phone: +61 2 9850 4750
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-05-09 | DOI: https://doi.org/10.1515/snde-2018-0008

Abstract

Markov regime-switching (MRS) autoregressive model is a widely used approach to model the economic and financial data with potential structural breaks. The innovation series of such MRS-type models are usually assumed to follow a Normal distribution, which cannot accommodate fat-tailed properties commonly present in empirical data. Many theoretical studies suggest that this issue can lead to inconsistent estimates. In this paper, we consider the tempered stable distribution, which has the attractive stability under aggregation property missed in other popular alternatives like Student’s t-distribution and General Error Distribution (GED). Through systematically designed simulation studies with the MRS autoregressive models, our results demonstrate that the model with tempered stable distribution uniformly outperforms those with Student’s t-distribution and GED. Our empirical study on the implied volatility of the S&P 500 options (VIX) also leads to the same conclusions. Therefore, we argue that the tempered stable distribution could be widely used for modelling economic and financial data in general contexts with an MRS-type specification.

Keywords: fat-tailed distribution; regime-switching; tempered stable distribution

JEL Classification: C22; C51; G11

References

  • Ardia, D. 2009. “Bayesian Estimation of a Markov-Switching Threshold Asymmetric GARCH Model with Student-t Innovations.” The Econometrics Journal 12: 105–126.CrossrefGoogle Scholar

  • Bianchi, M. L., S. T. Rachev, Y. S. Kim, and F. J. Fabozzi. 2010. “Tempered Stable Distributions and Processes in Finance: Numerical Analysis.” In: Mathematical and Statistical Methods for Actuarial Sciences and Finance, edited by M. Corazza and C. Pizzi, 33–42. Italy: Springer.Google Scholar

  • Bollerslev, T. 1987. “A Conditional Heteroskedastic Time Series Model for Speculative Prices and Rates of Return.” Review of Economics and Statistics 69: 542–547.CrossrefGoogle Scholar

  • Calzolari, G., R. Halbleib, and A. Parrini. 2014. “Estimating GARCH-type Models with Symmetric Stable Innovations: Indirect Inference Versus Maximum Likelihood.” Computational Statistics & Data Analysis 76: 158–171.CrossrefWeb of ScienceGoogle Scholar

  • Carr, P., H. Geman, D. B. Madan, and M. Yor. 2002. “The Fine Structure of Asset Returns: An Empirical Investigation*.” The Journal of Business 75: 305–333.CrossrefGoogle Scholar

  • Carrasco, M., L. Hu, and W. Ploberger. 2014. “Optimal Test for Markov Switching Parameters.” Econometrica 82: 765–784.CrossrefWeb of ScienceGoogle Scholar

  • Cho, J. S., and H. White. 2007. “Testing for Regime Switching.” Econometrica 75: 1671–1720.Web of ScienceCrossrefGoogle Scholar

  • Constantinides, A., and S. Savel’ev. 2013. “Modelling Price Dynamics: A Hybrid Truncated Lévy Flight-GARCH Approach.” Physica A 392: 2072–2078.Web of ScienceCrossrefGoogle Scholar

  • Cont, R., and P. Tankov. 2004. Financial Modelling with Jump Processes. United Kingdom: Chapman and Hall/CRS Press.Google Scholar

  • Diebold, F. X., and A. Inoue. 2001. “Long Memory and Regime Switching.” Journal of Econometrics 105: 131–159.CrossrefGoogle Scholar

  • Douc, R., E. Moulines, and T. Ryden. 2004. “Asymptotic Properties of the Maximum Likelihood Estimator in Autoregressive Models with Markov Regime.” Annals of Statistics 32: 2254–2304.CrossrefGoogle Scholar

  • Douc, R., and E. Moulines. 2012. “Asymptotic Properties of the Maximum Likelihood Estimation in Misspecified Hidden Markov Models.” The Annals of Statistics 40: 2697–2732.CrossrefGoogle Scholar

  • Faias, J., and L. C. Nunes. 2012. “Testing Volatility Regime Switching.” Working paper. Available at http://docentes.fe.unl.pt/~lcnunes/workingpapers/testing_volatility.pdf

  • Feng, L., and Y. Shi. 2016. “Fractionally Integrated Garch Model with Tempered Stable Distribution: A Simulation Study.” Journal of Applied Statistics 44: 2837–2857.Web of ScienceGoogle Scholar

  • Haas, M. 2009. “Value-at-Risk via Mixture Distributions Reconsidered.” Applied Mathematics and Computation 215: 2103–2119.Web of ScienceCrossrefGoogle Scholar

  • Haas, M., and M. S. Paolella. 2012. “Mixture and Regime-Switching GARCH Models.” In: Handbook of Volatility Models and Their Applications, edited by L. Bauwens, C. Hafner, and S. Laurent, 71–102. United Kingdom: Wiley.Google Scholar

  • Haas, M., S. Mittnik, and M. S. Paolella. 2004. “A New Approach to Markov-Switching GARCH Models.” Journal of Financial Econometrics 2: 493–530.CrossrefGoogle Scholar

  • Hamilton, J. D. 1988. “Rational-Expectations Econometric Analysis of Changes in Regime: An Investigation of the Term Structure of Interest Rates.” Journal of Economic Dynamics and Control 12: 385–423.CrossrefGoogle Scholar

  • Hamilton, J. D. 1989. “A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle.” Econometrica 57: 357–384.CrossrefGoogle Scholar

  • Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.Google Scholar

  • Ho, K. Y., Y. Shi, and Z. Zhang. 2013. “How does News Sentiment Impact Asset Volatility? Evidence from Long Memory and Regime-Switching Approaches.” North American Journal of Economics and Finance 26: 436–456.Web of ScienceCrossrefGoogle Scholar

  • Kim, Y. S., S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi. 2008. “Financial Market Models with Lévy Processes and Time-Varying Volatility.” Journal of Banking & Finance 32: 1363–1378.Web of ScienceCrossrefGoogle Scholar

  • Klaassen, F. 2002. “Improving GARCH Volatility Forecasts with Regime-Switching GARCH.” Empirical Economics 27: 363–394.CrossrefGoogle Scholar

  • Koponen, I. 1995. “Analytic Approach to the Problem of Convergence of Truncated Lévy Flights Towards the Gaussian Stochastic Process.” Physical Review E 52: 1197.CrossrefGoogle Scholar

  • Küchler, U., and S. Tappe. 2013. “Tempered Stable Distributions and Processes.” Stochastic Processes and their Applications 123: 4256–4293.CrossrefWeb of ScienceGoogle Scholar

  • Marcucci, J. 2005. “Forecasting Stock Market Volatility with Regime-Switching GARCH Models.” Studies in Nonlinear Dynamics & Econometrics 9: 1–55.Google Scholar

  • Mevel, L., and L. Finesso. 2004. “Asymptotical Statistics of Misspecified Hidden Markov Models.” IEEE Transactions on Automatic Control 49: 1123–1132.CrossrefGoogle Scholar

  • Mittnik, S., T. Doganoglu, and D. Chenyao. 1999. “Computing the Probability Density Function of the Stable Paretian Distribution.” Mathematical and Computer Modelling 29: 235–240.CrossrefGoogle Scholar

  • Pouzo, D., Z. Psaradakis, and M. Sola. 2016. Maximum Likelihood Estimation in Possibly Misspecified Dynamic Models with Time Inhomogeneous Markov Regimes. Available at SSRN: https://ssrn.com/abstract=2887771.

  • Ross, G. J., N. M. Adams, D. K. Tasoulis, and D. J. Hand. 2011. “A Nonparametric Change Point Model for Streaming Data.” Technometrics 53: 379–389.CrossrefGoogle Scholar

  • Shi, Y., and K. Y. Ho. 2015. “Long Memory and Regime Switching: A Simulation Study on the Markov Regime-Switching ARFIMA Model.” Journal of Banking & Finance 61: S189–S204.Web of ScienceCrossrefGoogle Scholar

  • Shi, Y., and L. Feng. 2016. “A Discussion on the Innovation Distribution of the Markov Regime-Switching GARCH Model.” Economic Modelling 53: 278–288.CrossrefWeb of ScienceGoogle Scholar

  • Stanley, H. E., V. Plerou, and X. Gabaix. 2008. “A Statistical Physics View of Financial Fluctuations: Evidence for Scaling and Universality.” Physica A 387: 3967–3981.Web of ScienceCrossrefGoogle Scholar

  • Susmel, R., and R. F. Engle. 1994. “Hourly Volatility Spillovers between International Equity Markets.” Journal of International Money and Finance 13: 3–25.CrossrefGoogle Scholar

  • Tankov, P. 2003. Financial Modelling with Jump Processes. Vol. 2. Boca Raton, Florida: CRC press.Google Scholar

  • Wilfling, B. 2009. “Volatility Regime-Switching in European Exchange Rates Prior to Monetary Unification.” Journal of International Money and Finance 28: 240–270.Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2019-05-09


Citation Information: Studies in Nonlinear Dynamics & Econometrics, Volume 24, Issue 1, 20180008, ISSN (Online) 1558-3708, DOI: https://doi.org/10.1515/snde-2018-0008.

Export Citation

©2020 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in