Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studies in Nonlinear Dynamics & Econometrics

Ed. by Mizrach, Bruce


IMPACT FACTOR 2018: 0.448
5-years IMPACT FACTOR: 0.877

CiteScore 2018: 0.85

SCImago Journal Rank (SJR) 2018: 0.552
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Mathematical Citation Quotient (MCQ) 2018: 0.07

Online
ISSN
1558-3708
See all formats and pricing
More options …
Volume 24, Issue 1

Issues

Volume 24 (2020)

On the performance of information criteria for model identification of count time series

Christian H. WeißORCID iD: https://orcid.org/0000-0001-8739-6631 / Martin H.-J.M. Feld
Published Online: 2019-05-09 | DOI: https://doi.org/10.1515/snde-2018-0012

Abstract

Model fitting for count time series is of great relevance for many economic applications. Here, we focus on the step of model selection, where information criteria like AIC and BIC are commonly used in practice. Previous studies about their model selection abilities concentrated on real-valued time series, but here, we comprehensively investigate AIC and BIC in a count time series context. In our simulations, we consider diverse scenarios of model selection, like the identification of serial (in)dependence, overdispersion, zero inflation or a trend, the order selection within a given model family as well as the model selection also across model families. We apply our findings to economic count time series about monthly numbers of strikes in the US, and about monthly numbers of corporate insolvencies in the districts of Rhineland-Palatinate.

This article offers supplementary material which is provided at the end of the article.

Keywords: AIC; BIC; corporate insolvencies; count process; model selection

References

  • Akaike, H. 1974. “A New Look at the Statistical Model Identification.” IEEE Transactions on Automatic Control 19 (6): 716–723.CrossrefGoogle Scholar

  • Altman, E. I., and P. Narayanan. 1997. “An International Survey of Business Failure Classification Models.” Financial Markets, Institutions & Instruments 6 (2): 1–57.CrossrefGoogle Scholar

  • Burnham, K. P., and D. R. Anderson. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd edition, New York: Springer-Verlag Inc.Google Scholar

  • Christou, V., and K. Fokianos. 2015. “On count Time Series Prediction.” Journal of Statistical Computation and Simulation 85 (2): 357–373.CrossrefWeb of ScienceGoogle Scholar

  • Czado, C., T. Gneiting, and L. Held. 2009. “Predictive Model Assessment for Count Data.” Biometrics 65 (4): 1254–1261.CrossrefWeb of ScienceGoogle Scholar

  • Davis, R. A., S. H. Holan, R. Lund, and N. Ravishanker, eds. 2016. Handbook of Discrete-Valued Time Series. Boca Raton: Chapman & Hall/CRC Press.Google Scholar

  • Emiliano, P. C., M. J. F. Vivanco, and F. S. de Menezes. 2014. “Information Criteria: How do they Behave in Different Models?” Computational Statistics and Data Analysis 69: 141–153.CrossrefWeb of ScienceGoogle Scholar

  • Hannan, E. J., and B. G. Quinn. 1979. “The Determination of the Order of an Autoregression.” Journal of the Royal Statistical Society, Series B 41 (2): 190–195.Google Scholar

  • Hughes, A. W., M. L. King, and K. T. Kwek. 2004. “Selecting the Order of an ARCH Model.” Economics Letters 83 (2): 269–275.CrossrefGoogle Scholar

  • Jung, R. C., and A. R. Tremayne. 2011. “Useful Models for time Series of Counts or Simply Wrong Ones?” AStA Advances in Statistical Analysis 95 (1): 59–91.CrossrefWeb of ScienceGoogle Scholar

  • Jung, R. C., B. P. M. McCabe, and A. R. Tremayne. 2016. “Model Validation and Diagnostics.” In Handbook of Discrete-Valued Time Series, ed. by Davis et al., 189–218. Boca Raton: Chapman & Hall/CRC Press.Google Scholar

  • Katz, R. W. 1981. “On Some Criteria for Estimating the Order of a Markov Chain.” Technometrics 23 (3): 243–249.CrossrefGoogle Scholar

  • Psaradakis, Z., M. Sola, F. Spagnolo, and N. Spagnolo. 2009. “Selecting Nonlinear Time Series Models Using Information Criteria.” Journal of Time Series Analysis 30 (4): 369–394.Web of ScienceCrossrefGoogle Scholar

  • R Core Team. 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.https://www.R-project.org

  • Reschenhofer, E. 1996. “Prediction with Vague Prior Knowledge.” Communications in Statistics – Theory and Methods 25 (3): 601–608.CrossrefGoogle Scholar

  • Rinke, S., and P. Sibbertsen. 2016. “Information Criteria for Nonlinear Time Series Models.” Studies in Nonlinear Dynamics & Econometrics 20 (3): 325–341.Web of ScienceGoogle Scholar

  • Röhl, K.-H., and G. Vogt. 2016. “Unternehmensinsolvenzen – Anhaltender Rückgang bei Fortbestehenden Regionalen Differenzen (in German).” IW-Trends 43 (3): 21–37.Google Scholar

  • Schwarz, G. 1978. “Estimating the Dimension of a Model.” Annals of Statistics 6 (2): 461–464.CrossrefGoogle Scholar

  • Weiß, C. H. 2018. An Introduction to Discrete-Valued Time Series. Chichester: John Wiley & Sons, Inc..Google Scholar

  • Weiß, C. H., A. Homburg, and P. Puig. 2016. “Testing for Zero Inflation and Overdispersion in INAR(1) models.” Statistical Papers, forthcoming.Web of ScienceGoogle Scholar

  • Wu, T.-J., and A. Sepulveda. 1998. “The Weighted Average Information Criterion for Order Selection in time Series and Regression Models.” Statistics & Probability Letters 39 (1): 1–10.CrossrefGoogle Scholar

About the article

Published Online: 2019-05-09


Citation Information: Studies in Nonlinear Dynamics & Econometrics, Volume 24, Issue 1, 20180012, ISSN (Online) 1558-3708, DOI: https://doi.org/10.1515/snde-2018-0012.

Export Citation

©2020 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Lianyong Qian, Qi Li, and Fukang Zhu
Applied Mathematical Modelling, 2020
[2]
Christian H. Weiß, Martin H.-J. M. Feld, Naushad Mamode Khan, and Yuvraj Sunecher
Stats, 2019, Volume 2, Number 2, Page 284

Comments (0)

Please log in or register to comment.
Log in