Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studies in Nonlinear Dynamics & Econometrics

Ed. by Mizrach, Bruce

IMPACT FACTOR 2017: 0.855

CiteScore 2017: 0.76

SCImago Journal Rank (SJR) 2017: 0.668
Source Normalized Impact per Paper (SNIP) 2017: 0.894

Mathematical Citation Quotient (MCQ) 2017: 0.02

See all formats and pricing
More options …
Volume 20, Issue 3


Information criteria for nonlinear time series models

Saskia Rinke
  • Institute of Statistics, Leibniz University Hannover, School of Economics and Management, Königsworther Platz 1, D-30167 Hannover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Philipp Sibbertsen
  • Corresponding author
  • Institute of Statistics, Leibniz University Hannover, School of Economics and Management, Königsworther Platz 1, D-30167 Hannover, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-09 | DOI: https://doi.org/10.1515/snde-2015-0026


In this paper the performance of different information criteria for simultaneous model class and lag order selection is evaluated using simulation studies. We focus on the ability of the criteria to distinguish linear and nonlinear models. In the simulation studies, we consider three different versions of the commonly known criteria AIC, SIC and AICc. In addition, we also assess the performance of WIC and evaluate the impact of the error term variance estimator. Our results confirm the findings of different authors that AIC and AICc favor nonlinear over linear models, whereas weighted versions of WIC and all versions of SIC are able to successfully distinguish linear and nonlinear models. However, the discrimination between different nonlinear model classes is more difficult. Nevertheless, the lag order selection is reliable. In general, information criteria involving the unbiased error term variance estimator overfit less and should be preferred to using the usual ML estimator of the error term variance.

This article offers supplementary material which is provided at the end of the article.

Keywords: information criteria; Monte Carlo; nonlinear time series; threshold models

JEL: C15; C22


  • Akaike, H. 1974. “A New Look at The Statistical Model Identification.” IEEE Transactions on Automatic Control 19: 716–723.Google Scholar

  • Bollerslev, T. 1986. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal of Econometrics 31: 307–327.Web of ScienceGoogle Scholar

  • Clements, M. P., and H.-M. Krolzig. 1998. “A Comparison of The Forecast Performance of Markov-Switching and Threshold Autoregressive Models of US GNP.” The Econometrics Journal 1: 47–75.Google Scholar

  • Emiliano, P. C., M. J. Vivanco, and F. S. De Menezes. 2014. “Information Criteria: How Do They Behave in different Models?” Computational Statistics & Data Analysis 69: 141–153.Web of ScienceGoogle Scholar

  • Engle, R. F. 1982. “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation.” Econometrica 50 (4): 987–1007.Google Scholar

  • Gonzalo, J., and J.-Y. Pitarakis. 2002. “Estimation and Model Selection Based Inference in Single and Multiple Threshold Models.” Journal of Econometrics 110: 319–352.Google Scholar

  • Hamaker, E. 2009. Using Information Criteria to Determine The Number of Regimes in Threshold Autoregressive Models.” Journal of Mathematical Psychology 53: 518–529.Google Scholar

  • Hamilton, J. D. 1989. “A New Approach To The Economic Analysis of Nonstationary Time Series and The Business Cycle.” Econometrica 57: 357–384.Google Scholar

  • Hamilton, J. D. 1994. Time Series Analysis. Princeton University Press.Google Scholar

  • Hansen, B. E. 1997. “Inference in TAR Models.” Studies in Nonlinear Dynamics & Econometrics 2.Google Scholar

  • Hughes, A. W., and M. L. King. 2003. “Model Selection Using AIC in the Presence of One-Sided Information.” Journal of Statistical Planning and Inference 115: 397–411.Google Scholar

  • Hughes, A. W., M. L. King, and K. T. Kwek. 2004. “Selecting the Order of An ARCH model.” Economics Letters 83: 269–275.Google Scholar

  • Hurvich, C. M., and C.-L. Tsai. 1989. “Regression and Time Series Model Selection in Small Samples.” Biometrika 76: 297–307.Google Scholar

  • Kapetanios, G. 2001. “Model Selection in Threshold Models.” Journal of Time Series Analysis 22: 733–754.Web of ScienceGoogle Scholar

  • Li, W. 1988. “The Akaike Information Criterion in Threshold Modelling: Some Empirical Evidences.” In Nonlinear Time Series and Signal Processing, Lecture Notes in Control and Information Sciences, vol. 106, Berlin Heidelberg: Springer, pp. 88–96, URL http://dx.doi.org/10.1007/BFb0044277.Crossref

  • Liu, J., S. Wu, and J. V. Zidek. 1997. “On Segmented Multivariate Regression,” Statistica Sinica 7: 497–525.Google Scholar

  • Luukkonen, R., P. Saikkonen, and T. Teräsvirta. 1988a. “Testing Linearity Against Smooth Transition Autoregressive Models.” Biometrika 75: 491–499.Google Scholar

  • Luukkonen, R., P. Saikkonen, and T. Teräsvirta. 1988b. “Testing Linearity in Univariate Time Series Models.” Scandinavian Journal of Statistics 15: 161–175.Google Scholar

  • McQuarrie, A., R. Shumway, and C.-L. Tsai. 1997. “The Model Selection Criterion AICu.” Statistics & Probability Letters 34: 285–292.Google Scholar

  • Pitarakis, J.-Y. 2006. “Model Selection Uncertainty and Detection of Threshold Effects.” Studies in Nonlinear Dynamics & Econometrics 10.Google Scholar

  • Psaradakis, Z., M. Sola, F. Spagnolo, and N. Spagnolo. 2009. “Selecting Nonlinear Time Series Models Using Information Criteria.” Journal of Time Series Analysis 30: 369–394.Web of ScienceGoogle Scholar

  • Schwarz, G. 1978. “Estimating the Dimension of A Model.” The Annals of Statistics 6: 461–464.Google Scholar

  • Shibata, R. 1986. “Consistency of Model Selection and Parameter Estimation.” Journal of Applied Probability 23: 127–141.Google Scholar

  • Smith, A., P. A. Naik, and C.-L. Tsai. 2006. “Markov-switching Model Selection using Kullback–Leibler Divergence.” Journal of Econometrics 134: 553–577.Google Scholar

  • Teräsvirta, T. 1994. “Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models.” Journal of the American Statistical Association 89: 208–218.Google Scholar

  • Tong, H. 1983. Threshold Models in Non-Linear Time Series Analysis. Lecture Notes in Statistics, No. 21. Springer-Verlag.Google Scholar

  • Tong, H. 1990. Non-linear Time Series: A Dynamical System Approach. Oxford University Press.Google Scholar

  • Tong, H., and K. S. Lim. 1980. “Threshold Autoregression, Limit Cycles and Cyclical Data.” Journal of the Royal Statistical Society. Series B (Methodological) 245–292.Google Scholar

  • van Dijk, D., T. Teräsvirta, and P. H. Franses. 2002. “Smooth Transition Autoregressive Models – A Survey of Recent Developments.” Econometric Reviews 21: 1–47.Google Scholar

  • Wen, M.-J., and Y.-H. Tu. 2001. “Modified WIC for Order Selection in Autoregressive Model.” Technical Report No. 40, National Cheng-Kung University, Institute of Statistics.Google Scholar

  • Wong, C. S., and W. K. Li. 1998. “A Note on the Corrected Akaike Information Criterion for Threshold Autoregressive Models.” Journal of Time Series Analysis 19: 113–124.Google Scholar

  • Wu, T.-J., and A. Sepulveda. 1998. “The Weighted Average Information Criterion for Order Selection in Time Series and Regression Models.” Statistics & Probability Letters 39: 1–10.Google Scholar

About the article

Corresponding author: Philipp Sibbertsen, Institute of Statistics, Leibniz University Hannover, School of Economics and Management, Königsworther Platz 1, D-30167 Hannover, Germany, Tel.: +49-511-762-3783, Fax: +49-511-762-3923, e-mail:

Published Online: 2015-12-09

Published in Print: 2016-06-01

Citation Information: Studies in Nonlinear Dynamics & Econometrics, Volume 20, Issue 3, Pages 325–341, ISSN (Online) 1558-3708, ISSN (Print) 1081-1826, DOI: https://doi.org/10.1515/snde-2015-0026.

Export Citation

©2016 by De Gruyter.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in