Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studies in Nonlinear Dynamics & Econometrics

Ed. by Mizrach, Bruce

IMPACT FACTOR 2018: 0.448
5-years IMPACT FACTOR: 0.877

CiteScore 2018: 0.85

SCImago Journal Rank (SJR) 2018: 0.552
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Mathematical Citation Quotient (MCQ) 2018: 0.07

See all formats and pricing
More options …
Ahead of print


Volume 24 (2020)

Forecasting the unemployment rate over districts with the use of distinct methods

Marcin Wozniak
  • Corresponding author
  • Institute of Socio-Economic Geography and Spatial Management, Adam Mickiewicz University, Poznan, Poland
  • Labor Market Observatory of Poznan Agglomeration, Poznan, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-05-26 | DOI: https://doi.org/10.1515/snde-2016-0115


Interdependencies among neighboring regions appear to be important in forming the shape of local labor markets. Nevertheless, only a few studies exist which have applied spatial models to forecast over small spatial units such as cities, districts or counties. The majority of predictions are developed with quarterly or yearly time series for a country or at regional level. The paper presents the above phenomena and deals with the problem of simultaneous forecasting of the unemployment rate over 35 poviats (districts and cities) in one of the Polish provinces. Two extremely different models with spatial dependencies were developed and estimated in this paper: the Spatial Vector Autoregressions (SpVAR) and the Spatial Artificial Neural Network (SpANN). The 13-month out-of-sample forecast is based on high frequency, raw, monthly panel data extracted from 31 local labor offices. The procedure worked out here allows comparing the forecasting performance of spatial models with their non-spatial and seasonal equivalents. The inclusion of a spatial component into the models significantly improves the accuracy of forecasts; however, the overall performance of SpVAR is 30% better than SpANN.

Keywords: labor market forecast; panel data; Spatial Artificial Neural Network; spatial dependencies; Spatial Vector Autoregression


  • Adhikari, R., and R. Agrawal. 2012. “Forecasting Strong Seasonal Time Series with Artificial Neural Networks.” Journal of Scientific and Industrial Research 71: 657–666.Google Scholar

  • Anselin, L. 1988. Spatial Econometrics: Methods and Models. Springer Science & Business Media.Google Scholar

  • Arbia, G., and B. Fingleton. 2008. “New Spatial Econometric Techniques and Applications in Regional Science.” Papers in Regional Science 87: 311–317.CrossrefGoogle Scholar

  • Arellano, M., and S. Bond. 1991. “Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations.” Review of Economic Studies 58 (2): 277–297.CrossrefGoogle Scholar

  • Baltagi, B. H., B. Fingleton, and A. Pirotte. 2014. “Estimating and Forecasting with a Dynamic Spatial Panel Data Model.” Oxford Bulletin of Economics and Statistics 76 (1): 112–138.CrossrefGoogle Scholar

  • Beck, N., K. Gleditsch, and K. Beardsly. 2006. “Space is more than Geography: Using Spatial Econometrics in the Study of Political Economy.” International Studies 50: 27–44.CrossrefGoogle Scholar

  • Beenstock, M., and D. Felsenstein. 2007. “Spatial Vector Autoregressions.” Spatial Economic Analysis 2 (2): 167–196.CrossrefGoogle Scholar

  • Blanchard, O., and P. Diamond. 1990. “The Cyclical Behovior of the Gross Flows of U.S. Workers.” Brookings Papers on Economic Activity 21 (2): 85–156.Google Scholar

  • Blanchard, O., and L. F. Katz. 1992. “Regional Evolutions.” Brookings Papers on Economic Activity 19921: 1–75.Google Scholar

  • Bottou, L., O. Chapelle, D. DeCoste, and J. Weston. 2007. Large-Scale Kernel Machines. Cambridge, Massachusetts: MIT Press.Google Scholar

  • Canova, F., and M. Ciccarelli. 2013. “Panel Vector Autoregressive Models A Survey.” ECB Working Paper Series 15: 1–53. http://doi.org/10.1108/S0731-9053(2013)0000031006.

  • Chen, Y. 2012. “On the Four Types of Weight Functions for Spatial Contiguity Matrix.” Letters in Spatial and Resource Sciences 5 (2): 65–72.CrossrefGoogle Scholar

  • Cleveland, R. B., W. S. Cleveland, J. E. McRae, and I. Terpenning. 1990. “STL: A Seasonal-Trend Decomposition Procedure Based on Loess.” Journal of Official Statistics 6 (1): 3–73.Google Scholar

  • Cliff, A., and J. K. Ord. 1973. Spatial Autocorrelation. London: Pion.Google Scholar

  • Corrado, L., and B. Fingleton. 2012. “Where is the Economics in Spatial Econometrics.” Journal of Regional Science 52 (2): 210–239.CrossrefGoogle Scholar

  • Dewachter, H., R. Houssa, and P. Toffano. 2012. “Spatial Propagation of Macroeconomic Shocks in Europe.” Review of World Economics 148 (2): 377–402.CrossrefGoogle Scholar

  • Feng, C., H. Wang, N. Lu, T. Chen, H. He, Y. Lu, and X. Tu. 2014. “Log-Transformation and its Implications for Data Analysis.” Shanghai Arch Psychiatry 26 (2): 105–109.Google Scholar

  • Fotheringham, S., and P. Rogerson. 2009. The SAGE Handbook of Spatial Analysis. London: SAGE Publications Ltd.Google Scholar

  • Giacomini, R., and C. Granger. 2004. “Aggregation of Space-Time Processes.” Journal of Econometrics 118 (1–2): 7–26.CrossrefGoogle Scholar

  • Girardin, E., and K. A. Kholodilin. 2011. “How Helpful are Spatial Effects in Forecasting the Growth of Chinese Provinces?” Journal of Forecast 30: 622–643.CrossrefGoogle Scholar

  • Gnana, K., and S. N. Deepa. 2013. “Review on Methods to Fix Number of Hidden Neurons in Neural Networks.” Mathematical Problems in Engineering 2013, Article ID 425740, 11 pages. doi:.CrossrefGoogle Scholar

  • Griffith, D. A. 2003 Spatial Autocorrelation and Spatial Filtering. Berlin: Springer.Google Scholar

  • Gurney, K. N. 2006. “Neural Networks for Perceptual Processing: From Simulation Tools to Theories.” Philosophical Transactions of the Royal Society London B 362: 339–353.Google Scholar

  • Hampel, K., E. Kunz, M. Schanne, G. Norbert, R. Wapler, and A. Weyh. 2007. “Regional Employment Forecasts with Spatial Interdependencies.” Discussion Paper 02/2007, IAB.Google Scholar

  • Holly, S., M. Pesaran, and T. Yamagata. 2011. “The Spatial and Temporal Diffusion of House Prices in the UK.” Journal of Urban Economics 69 (1): 2–23CrossrefGoogle Scholar

  • Hong, J., S. Lee, J. Lim, and J. Kim. 2013. “Application of Spatial Econometrics Analysis for Traffic Accident Prediction Models in Urban Areas.” Proceedings of the Eastern Asia Studies 9: 390–397.Google Scholar

  • Hyndman, R. 2015. “High-dimensional Autocovariance Matrices and Optimal Linear Prediction.” Electronic Journal of Statistics 9 (1): 792–796. DOI: .CrossrefGoogle Scholar

  • Igel, Ch., and M. Hüsken. 2000. “Improving the Rprop Learning Algorithm.” Second International Symposium on Neural Computation, pp. 115–121, ICSC Academic Press.Google Scholar

  • Igel, Ch, and M. Hüsken. 2003. “Empirical Evaluation of the Improved Rprop Learning Algorithm.” Neurocomputing 50: 105–123. DOI: .CrossrefGoogle Scholar

  • James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An Introduction to Statistical Learning with Applications in R. New York: Springer.Google Scholar

  • Kaastra, I., and M. Boyd. 1996. “Designing a Neural Network for Forecasting Financial and Economic Time Series.” Neurocomputing 10 (3): 215–236.CrossrefGoogle Scholar

  • Khalik Salman, A., L. Arnesson, A. Sörensson, and G. Shukur. 2010. “Estimating International Tourism Demand for Selected Regions in Sweden and Norway with Iterative Seemingly Unrelated Regressions (ISUR).” Scandinavian Journal of Hospitality and Tourism 10 (4): 395–410.CrossrefGoogle Scholar

  • Kholodin, K., B. Siliverstos, and S. Kooths. (2007). A Dynamic Panel Data Approach to the Forecasting of the GDP of German Lander. German Institute for Economic Research.Google Scholar

  • Kriesel, D. 2007. A Brief Introduction to Neural Networks, http://www.dkriesel.com.

  • Kuethe, T. H., and V. Pede. 2009. Regional Housing Price Cycles: A Spatio-Temporal Analysis Using Us State Level, (09-04). http://ideas.repec.org/p/pae/wpaper/09-04.html.

  • Lee, L. F., and J. Yu. 2010. “Estimation of Spatial Autoregressive Panel Data Models with Fixed Effects.” Journal of Econometrics 154: 165–185.CrossrefGoogle Scholar

  • Lee, L., and J. Yu. 2015. “Identification of Spatial Durbin Panel Models.” Journal of Applied Econometrics. 31: 133–162. DOI: .CrossrefGoogle Scholar

  • Lehmann, R., and K. Wohlrabe. 2015. “Regional Economic Forecasting: State-of-the-Art Methodology and Future Challenges.” Economics and Business Letters 3 (4): 218–231.Google Scholar

  • LeSage, J. P. 1999. “The Theory and Practice of Spatial Econometrics.” International Journal of Forecasting 2 (2): 245–246.Google Scholar

  • Levin, A., Chien-Fu Lin, and Chia-Shang Chu. 2002. “Unit Root Tests in Panel Data: Asymptotic and Finite-Sample Properties.” Journal of Econometrics 108 (1): 1–24.CrossrefGoogle Scholar

  • Lo, S., and S. Andrews. 2015. “To transform or not to transform: using generalized linear mixed models to analyse reaction time data.” Frontiers in Psychology 6: 1171. DOI: .CrossrefGoogle Scholar

  • Lütkepohl, H., and F. Xu. 2012. “The Role of the Log Transformation in Forecasting Economic Variables.” Empirical Economics 42 (3): 619–638.CrossrefGoogle Scholar

  • May, B., N. Korda, A. Lee, and D. Leslie. 2012. “Optimistic Bayesian Sampling in Contextual-Bandit Problems.” The Journal of Machine Learning Research 13 (1): 2069–2106.Google Scholar

  • Monteiro, J. 2009. “Pollution Havens: a Spatial Panel VAR Approach.” The European Trade Study Group, 1–26. Retrieved from: http://www.etsg.org/ETSG2009/papers/monteiro.pdf.

  • Moran, P. A. P. 1948. “The Interpretation of Statistical Maps.” Journal of the Royal Statistical Society. Series B (Methodological) 10 (2): 243–251.Google Scholar

  • Moran, P. A. P. 1950. “Notes on Continuous Stochastic Phenomena.” Biometrika 37: 17–23.CrossrefGoogle Scholar

  • Mutl, J. 2009. “Panel VAR Models with Spatial Dependence.” Institute for Advanced Studies, Economics Series 237: 1–38.Google Scholar

  • Oancea, B., and S. Ciucu. 2013. “Time Series Forecasting using Neural Networks.” Proceedings of the CKS 2013 International Conference.Google Scholar

  • O’Hara, R. B., and D. J. Kotze. 2010. “Do Not Log-Transform Count Data.” Methods in Ecology and Evolution 1: 118–122.CrossrefGoogle Scholar

  • Patuelli, R., and M. Mayor. 2012. “Short-Run Regional Forecasts: Spatial Models Through Varying Cross-Sectional and Temporal Dimensions.” Quaderni DSE Working Paper No. 835. http://dx.doi.org/10.2139/ssrn.2084219.

  • Patuelli, R., S. Longhi, A. Reggiani, and P. Nijkamp. 2005. Forecasting Regional Employment in Germany by Means of Neural Networks and Genetic Algorithms, (0511002), 1–23. http://ideas.repec.org/p/wpa/wuwpco/0511002.html.

  • Pesaran, M. H. 2007. “A Simple Panel Unit Root Test in the Presence of Cross-Section Dependence.” Journal of Applied Econometrics 22: 265–312.CrossrefGoogle Scholar

  • Riedmiller, M. 1994. “Advanced Supervised Learning in Multi-Layer Perceptrons – from Backpropagation to Adaptive Learning Algorithms.” International Journal of Computer Standards and Interfaces 16: 265–278.CrossrefGoogle Scholar

  • Riedmiller, M., and H. Braun. 1993. “A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm.” EEE International Conference on Neural Networks, 586–599.Google Scholar

  • Schanne, N., R. Wappler, and A. Weyh. 2010. “Regional Unemployment Forecasts with Spatial Interdependencies.” International Journal of Forecasting 26 (4): 908–926.CrossrefGoogle Scholar

  • Schurmann, T., and P. Grassberger. 1996. “Entropy Estimation of Symbol Sequences.” Chaos 6: 41–427.Google Scholar

  • Seymen, A. 2008. “A Critical Note on the Forecast Error Variance Decomposition.” SSRN Electronic Journal 1–17. http://doi.org/10.2139/ssrn.1266093.

  • Shimer, R. 2005. “The Cyclical Behavior of Equilibrium Unemployment and Vacancies.” American Economic Review 95 (1): 25–49.CrossrefGoogle Scholar

  • Sims, Ch. A., ed. 1994. Advances in Econometrics. Cambridge Books, Cambridge University Press.Google Scholar

  • Stoyan, D., G. Upton, and B. Fingleton. 1986. Spatial Data Analysis, vol. 1: Point Pattern and Quantitative Data. Chichester/New York/Brisbane/Toronto/Singapore: J. Wiley & Sons, 1985.Google Scholar

  • Telser, L. G. 1964. “Iterative Estimation of a Set of Linear Regression Equations.” Journal of American Statistical Association 59: 845–862.CrossrefGoogle Scholar

  • Vega, S., and J. P. Elhorst. 2014. “Modelling Regional Labour Market Dynamics in Space and Time.” Papers in Regional Science 93 (4): 819–842.CrossrefGoogle Scholar

  • Viton, P. A. 2010. “Notes on Spatial Econometric Models.” City and Regional Planning 870 (3): 9–10.Google Scholar

  • Wozniak, M. 2015. “Can Stochastic Equilibrium Search Model Fit Transition Economies?.” Acta Oeconomica 65 (4): 567–591.CrossrefGoogle Scholar

  • Xu, W., Z. Li, and Q. Chen. 2012. Forecasting the Unemployment Rate by Neural Networks Using Search Engine Query Data, Hawaii International Conference on System Sciences.Google Scholar

  • Zhang, Z. 2016. “Neural Networks: Further Insights into Error Function, Generalized Weights and Others.” Annals of Translational Medicine 4 (16): 300.CrossrefGoogle Scholar

  • Zhang, G., B. Eddy Patuwo, and Michael Y. Hu. 1998. “Forecasting with Artificial Neural Networks: The State of the Art.” International Journal of Forecasting 14 (1): 35–62.CrossrefGoogle Scholar

  • Zhang, Y, Z. Zhang, and D. Wei. 2012. “Centrality Measure in Weighted Networks Based on an Amoeboid Algorithm.” Journal of Information & Computational Science 9 (2): 369–376.Google Scholar

About the article

Published Online: 2018-05-26

Citation Information: Studies in Nonlinear Dynamics & Econometrics, 20160115, ISSN (Online) 1558-3708, DOI: https://doi.org/10.1515/snde-2016-0115.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in