Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studies in Nonlinear Dynamics & Econometrics

Ed. by Mizrach, Bruce

IMPACT FACTOR 2018: 0.448
5-years IMPACT FACTOR: 0.877

CiteScore 2018: 0.85

SCImago Journal Rank (SJR) 2018: 0.552
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Mathematical Citation Quotient (MCQ) 2017: 0.02

See all formats and pricing
More options …
Volume 22, Issue 5


Testing for misspecification in the short-run component of GARCH-type models

Thomas Chuffart
  • Corresponding author
  • Université Bourgogne Franche-Comté, CRESE EA3190, 30 Avenue de l'Observatoire, Besançon, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Emmanuel Flachaire
  • Aix-Marseille University, CNRS, EHESS, Centrale Marseille, Aix-Marseille School of Economics, 5-9 Boulevard Bourdet, CS 50498 Marseille, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anne Péguin-Feissolle
  • Aix-Marseille University, CNRS, EHESS, Centrale Marseille, Aix-Marseille School of Economics, 5-9 Boulevard Bourdet, CS 50498 Marseille, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-03 | DOI: https://doi.org/10.1515/snde-2017-0069


In this article, a misspecification test in conditional volatility and GARCH-type models is presented. We propose a Lagrange Multiplier type test based on a Taylor expansion to distinguish between (G)ARCH models and unknown GARCH-type models. This new test can be seen as a general misspecification test of a large set of GARCH-type univariate models. It focuses on the short-term component of the volatility. We investigate the size and the power of this test through Monte Carlo experiments and we compare it to two other standard Lagrange Multiplier tests, which are more restrictive. We show the usefulness of our test with an illustrative empirical example based on daily exchange rate returns.

This article offers supplementary material which is provided at the end of the article.

Keywords: conditional heteroskedasticity; GARCH; Lagrange multiplier test; misspecification test; nonlinear volatility time series


  • Amado, C., and T. Teräsvirta. 2017. “Specification and Testing of Multiplicative Time-Varying GARCH Models with Applications.” Econometric Reviews 36: 421–446.CrossrefWeb of ScienceGoogle Scholar

  • Beine, M., S. Laurent, and C. Lecourt. 2003. “Official Central Bank Interventions and Exchange Rate Volatility: Evidence from a Regime-Switching Analysis.” European Economic Review 47: 891–911.CrossrefGoogle Scholar

  • Berkes, I., L. Horváth, and P. Kokoszka. 2003. “GARCH Processes: Structure and Estimation.” Bernoulli 9: 201–227.CrossrefGoogle Scholar

  • Black, F. 1976. “Studies of Stock Price Volatility Changes.” In Proceedings of the 1976 Meetings of the American Statistical Association, Business and Economics Statistics Section, 177–181.Google Scholar

  • Bollerslev, T. 1986. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal of Econometrics 31: 307–327.CrossrefGoogle Scholar

  • Bonser-Neal, C., and G. Tanner. 1996. “Central Bank Intervention and the Volatility of Foreign Exchange Rates: Evidence from the Options Market.” Journal of International Money and Finance 15: 853–878.CrossrefGoogle Scholar

  • Cavicchioli, M. 2014. “Determining the Number of Regimes in Markov Switching VAR and VMA Models.” Journal of Time Series Analysis 35: 173–186.Web of ScienceCrossrefGoogle Scholar

  • Chan, F., and M. McAleer. 2002. “Maximum Likelihood Estimation of STAR and STAR-GARCH Models: Theory and Monte Carlo Evidence.” Journal of Applied Econometrics 17: 509–534.CrossrefGoogle Scholar

  • Chuffart, T. 2015. “Selection Criteria in Regime Switching Conditional Volatility Models.” Econometrics 3: 289.CrossrefWeb of ScienceGoogle Scholar

  • Davidson, R., and J. MacKinnon. 2000. “Bootstrap Tests: How Many Bootstraps?” Econometric Reviews 19: 55–68.CrossrefGoogle Scholar

  • Ding, Z., C. W. Granger, and R. F. Engle. 1993. “A Long Memory Property of Stock Market Returns and a New Model.” Journal of Empirical Finance 1: 83–106.CrossrefGoogle Scholar

  • Dominguez, K. M. 1998. “Central Bank Intervention and Exchange Rate Volatility.” Journal of International Money and Finance 17: 161–190.CrossrefGoogle Scholar

  • Engle, R. F. 1982. “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation.” Econometrica 50: 987–1007.CrossrefGoogle Scholar

  • Engle, R. F., and V. K. Ng. 1993. “Measuring and Testing the Impact of News on Volatility.” Journal of Finance 48: 1749–1778.CrossrefGoogle Scholar

  • Erdemlioglu, D., S. Laurent, and C. J. Neely. 2013. “Econometric Modeling of Exchange Rate Volatility and Jumps, chapter 16.” In Handbook of Research Methods and Applications in Empirical Finance, edited by Edward Elgar, 373–427. Cheltenham, UK: Edward Elgar Publishing.Google Scholar

  • Ferraro, D., K. Rogoff, and B. Rossi. 2015. “Can Oil Prices Forecast Exchange Rates? An Empirical Analysis of the Relationship Between Commodity Prices and Exchange Rates.” Journal of International Money and Finance 54: 116–141.Web of ScienceCrossrefGoogle Scholar

  • Francq, C., and J.-M. Zakoian. 2007. “Quasi-Maximum Likelihood Estimation in GARCH Processes When Some Coefficients are Equal to Zero.” Stochastic Processes and Their Applications 117: 1265–1284.Web of ScienceCrossrefGoogle Scholar

  • Franses, P. H., and D. Van Dijk. 1996. “Forecasting Stock Market Volatility Using (non-linear) Garch Models.” Journal of Forecasting 15: 229–235.CrossrefGoogle Scholar

  • Galì, J., and T. Monacelli. 2005. “Monetary Policy and Exchange Rate Volatility in a Small Open Economy.” Review of Economic Studies 72: 707–734.CrossrefGoogle Scholar

  • Glosten, L. R., R. Jagannathan, and D. E. Runkle. 1993. “On the Relation Between the Expected Value and the Volatility of the Nominal Excess Return on Stocks.” Journal of Finance 48: 1779–1801.CrossrefGoogle Scholar

  • Haas, M., S. Mittnik, and M. S. Paolella. 2004. “A New Approach to Markov-Switching Garch Models.” Journal of Financial Econometrics 2: 493–530.CrossrefGoogle Scholar

  • Haas, M., and M. S. Paolella. 2012. “Mixture and Regime-Switching Garch Models.” In Handbook of Volatility Models and Their Applications, 71–102. Hoboken, New Jersey, États-Unis: Wiley-Blackwell.Google Scholar

  • Halunga, A. G., and C. D. Orme. 2009. “First-Order Asymptotic Theory for Parametric Misspecification Tests of Garch Models.” Econometric Theory 25: 364–410.Web of ScienceCrossrefGoogle Scholar

  • Krolzig, H.-M. 1997. Markov-Switching Vector Autoregressions, Lecture Notes in Economics and Mathematical Systems, volume 454. Berlin Heidelberg: Springer.Google Scholar

  • Lamoureux, C. G., and W. D. Lastrapes. 1990. “Persistence in Variance, Structural Change, and the GARCH Model.” Journal of Business & Economic Statistics 8: 225–234.Google Scholar

  • Laurent, Sébastien, Christelle Lecourt, and Franz C. Palm. 2016. “Testing for Jumps in Conditionally Gaussian ARMA–GARCH Models, a Robust Approach.” Computational Statistics & Data Analysis 100: 383–400. DOI: .CrossrefWeb of ScienceGoogle Scholar

  • Lebreton, M., and A. Péguin-Feissolle. 2007. “Robust Tests for Heteroscedasticity in a General Framework.” Annals of Economics and Statistics (85): 159–187.Google Scholar

  • Lee, T.-H., H. White, and C. W. J. Granger. 1993. “Testing for Neglected Nonlinearity in Time Series Models: A Comparison of Neural Network Methods and Alternative Tests.” Journal of Econometrics 56: 269–290.CrossrefGoogle Scholar

  • Ling, S., and M. McAleer. 2003. “Asymptotic Theory for a Vector Arma-Garch Model.” Econometric Theory 19: 280–310.Google Scholar

  • Loudon, G. F., W. H. Watt, and P. K. Yadav. 2000. “An Empirical Analysis of Alternative Parametric Arch Models.” Journal of Applied Econometrics 15: 117–136.CrossrefGoogle Scholar

  • Lundbergh, S., and T. Teräsvirta. 2002. “Evaluating GARCH Models.” Journal of Econometrics 110: 417–435.Web of ScienceCrossrefGoogle Scholar

  • Maheu, J. M., and T. H. McCurdy. 2000. “Identifying Bull and Bear Markets in Stock Returns.” Journal of Business & Economic Statistics 18: 100–112.Google Scholar

  • Patton, A. J. 2011. “Volatility Forecast Comparison Using Imperfect Volatility Proxies.” Journal of Econometrics 160: 246–256.CrossrefWeb of ScienceGoogle Scholar

  • Péguin-Feissolle, A., and B. Sanhaji. 2016. “Tests of the Constancy of Conditional Correlations of Unknown Functional Form in Multivariate Garch Models.” Annals of Economics and Statistics (123/124): 77–101.Google Scholar

  • Péguin-Feissolle, A., B. Strikholm, and T. Teräsvirta. 2013. “Testing the Granger Noncausality Hypothesis in Stationary Nonlinear Models of Unknown Functional Form.” Communications in Statistics - Simulation and Computation 42: 1063–1087.CrossrefWeb of ScienceGoogle Scholar

  • Storti, G., and C. Vitale. 2003. “BL-GARCH Models and Asymmetries in Volatility.” Statistical Methods & Applications 12: 19–39.CrossrefGoogle Scholar

  • Teräsvirta, T. 2012. “Nonlinear Models for Autoregressive Conditional Heteroskedasticity.” In Handbook of Volatility Models and Their Applications, 47–69. Hoboken, New Jersey, États-Unis: Wiley-Blackwell.Google Scholar

  • Zhang, H. J., J. M. Dufour, and J. W. Galbraith. 2016. “Exchange Rates and Commodity Prices: Measuring Causality at Multiple Horizons.” Journal of Empirical Finance 36: 100–120. DOI: .CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2018-07-03

Citation Information: Studies in Nonlinear Dynamics & Econometrics, Volume 22, Issue 5, 20170069, ISSN (Online) 1558-3708, DOI: https://doi.org/10.1515/snde-2017-0069.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in