Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studies in Nonlinear Dynamics & Econometrics

Ed. by Mizrach, Bruce

IMPACT FACTOR 2018: 0.448
5-years IMPACT FACTOR: 0.877

CiteScore 2018: 0.85

SCImago Journal Rank (SJR) 2018: 0.552
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Mathematical Citation Quotient (MCQ) 2018: 0.07

See all formats and pricing
More options …
Ahead of print


Volume 24 (2020)

Temporal aggregation of random walk processes and implications for economic analysis

Yamin S Ahmad
  • Corresponding author
  • University of Wisconsin – Whitewater, Department of Economics, 800 W Main Street, Whitewater, WI 53190, USA, Phone: +(262) 472 5576, Fax: +(262) 472 4683
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ivan Paya
Published Online: 2019-09-18 | DOI: https://doi.org/10.1515/snde-2017-0102


This paper examines the impact of time averaging and interval sampling data assuming that the data generating process for a given series follows a random walk with iid errors. We provide exact expressions for the corresponding variances, and covariances, for both levels and higher order differences of the aggregated series, as well as that for the variance ratio, demonstrating exactly how the degree of temporal aggregation impacts these properties. We empirically investigate this issue on exchange rates and find that the values of the variance ratios and autocorrelation coefficients at different frequencies are consistent with our theoretical results. We also conduct a simulation exercise that illustrates the potential effect that conditional heteroskedasticity and fat tails may have on the temporal aggregation of a random walk and of a highly persistent autoregressive process.

Keywords: conditional heteroskedasticity; random walk; temporal aggregation; variance ratio

JEL Classification: C22; C19; C15; F47


  • Ahmad, Y., and W. Craighead. 2011. “Temporal Aggregation and Purchasing Power Parity Persistence.” Journal of International Money and Finance 30: 817–830.CrossrefGoogle Scholar

  • Amemiya, T., and R. Wu. 1972. “The Effect of Aggregation on Prediction in the Autoregressive Model.” Journal of the American Statistical Association 67 (339): 628–632.CrossrefGoogle Scholar

  • Bandi, F. M., and B. Perron. 2008. “Long-Run Risk-Return Trade-Offs.” Journal of Econometrics 143: 349–374.CrossrefGoogle Scholar

  • Bandi, F. M., B. Perron, A. Tamoni, and C. Tebaldi. 2016. Economic Uncertainty and Predictability. Available at SSRN: http://ssrn.com/abstract=2184260 or http://dx.doi.org/10.2139/ssrn.2184260.

  • Bianchi, D., and A. Tamoni. 2016. “The Dynamics of Expected Returns: Evidence from Multi-Scale Time Series Modeling.” Working Paper.Google Scholar

  • Bollerslev, T. 1986. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal of Econometrics 31: 307–327.CrossrefGoogle Scholar

  • Brewer, K. 1973. “Some Consequences of Temporal Aggregation and Systematic Sampling for ARMA and ARMAX Models.” Journal of Econometrics 1: 133–154.CrossrefGoogle Scholar

  • Calvet, L. E., and A. J. Fisher. 2001. “Forecasting Multifractal Volatility.” Journal of Econometrics 105: 27–58.CrossrefGoogle Scholar

  • Campbell, J. Y., and N. G. Mankiw. 1987. “Are Output Fluctuations Transitory?” Quarterly Journal of Economics 102 (4): 857–880.CrossrefGoogle Scholar

  • Campbell, J. Y., and N. G. Mankiw. 1989. “International Evidence on the Persistence of Economic Fluctuations.” Journal of Monetary Economics 23: 319–333.CrossrefGoogle Scholar

  • Campos, J., N. Ericcson, and D. Hendry. 1990. “An Analogue Model of Phase-Averaging Procedures.” Journal of Econometrics 43: 275–292.CrossrefGoogle Scholar

  • Cecchetti, S. G., and P. Lam. 1994. “Variance-Ratio Tests: Small-Sample Properties with an Application to International Output Data.” Journal of Business and Economic Statistics 12: 177–186.Google Scholar

  • Chan, W. S. 1993. “Disaggregation of Annual Time-Series Data to Quarterly Figures: A Comparative Study.” Journal of Forecasting 12: 677–688.CrossrefGoogle Scholar

  • Chow, G. C., and A. L. Lin. 1971. “Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series.” The Review of Economics and Statistics 53: 372–375.CrossrefGoogle Scholar

  • Chow, K. V., and K. C. Denning. 1993. “A Simple Multiple Variance Ratio Test.” Journal of Econometrics 58: 385–401.CrossrefGoogle Scholar

  • Christiano, L. J., and M. Eichenbaum. 1986. “Temporal Aggregation and Structural Inference in Macroeconomics.” NBER Technical Paper 60.

  • Christiano, L. J., M. Eichenbaum, and D. Marshall. 1991. “The Permanent Income Hypothesis Revisited.” Econometrica 59: 397–423.CrossrefGoogle Scholar

  • Cochrane, J. 1988. “How Big is the Random Walk in GNP?” Journal of Political Economy 96: 893–920.CrossrefGoogle Scholar

  • Deaton, A. 1987. “Life-Cycle Models of Consumption: Is the Evidence Consistent with the Theory?” in Advances in Econometrics – Fifth World Congress, edited by T F Bewley, Vol. II, 121–148, Cambridge, U.K.: Cambridge University Press.Google Scholar

  • Ding, Zhuanxin, C. W. J. Granger, and R. F. Engle. 1993. “A Long Memory Property of Stock Market Returns and a New Model.” Journal of Empirical Finance 1: 83–106.CrossrefGoogle Scholar

  • Drost, F. C., and T. E. Nijman. 1992. “Temporal Aggregation of GARCH Processes.” CenTER Discussion Papers 9066 and 9240, Tilburg University.Google Scholar

  • Drost, F. C., and T. E. Nijman. 1993. “Temporal Aggregation of GARCH Processes.” Econometrica 61: 909–927.CrossrefGoogle Scholar

  • Engle, R. F. 1982. “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation.” Econometrica 50: 987–1008.CrossrefGoogle Scholar

  • Fama, E. F. 1970. “Efficient Capital Markets: A Review of Theory and Empirical Work.” Journal of Finance 25: 383–417.Google Scholar

  • Fernández, R. B. 1981. “A Methodological Note on the Estimation of Time Series.” The Review of Economics and Statistics 63: 471–476.CrossrefGoogle Scholar

  • Fong, W. M., S. K. Koh, and S. Ouliaris. 1997. “Joint Variance-Ratio Tests of the Martingale Hypothesis for Exchange Rates.” Journal of Business & Economic Statistics 15 (1): 51–59.Google Scholar

  • Grilli, V., and G. Kaminsky. 1991. “Nominal Exchange Rate Regimes and the Real Exchange Rate.” Journal of Monetary Economics 27: 191–212.CrossrefGoogle Scholar

  • Haug, A. 1991. “The Random Walk hypothesis of Consumption and Time Aggregation.” Journal of Macroeconomics 13 (4): 691–700.CrossrefGoogle Scholar

  • Hochberg, Y. 1974. “Some Generalizations of T-Method in Simultaneous Inference.” Journal of Multivariate Analysis 4: 224–234.CrossrefGoogle Scholar

  • Huizinga, J. 1987. “An Empirical Investigation of the Long-Run Behavior of Real Exchange Rates.” Carnegie-Rochester Conference Series on Public Policy 27: 149–214.CrossrefGoogle Scholar

  • Litterman, R. B. 1983. “A Random Walk, Markov Model for the Distribution of Time Series.” Journal of Business and Economic Statistics 1: 169–173.Google Scholar

  • Liu, C. Y., and J. He. 1991. “A Variance Ratio Test of Random Walks in Foreign Exchange Rates.” Journal of Finance 46: 773–785.CrossrefGoogle Scholar

  • Lo, A. W. 2002. “The Statistics of Sharpe Ratios.” Financial Analysts Journal 58 (4): 36–52.CrossrefGoogle Scholar

  • Lo, A. W., and A. C. MacKinlay. 1988. “Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test.” The Review of Financial Studies 1 (1): 41–66.CrossrefGoogle Scholar

  • Lo, A. W., and A. C. MacKinlay. 1989. “The Size and Power Variance Ratio Test in Finite Samples: A Monte Carlo Investigation.” Journal of Econometrics 40: 203–238.CrossrefGoogle Scholar

  • Nelson, C., and C. Plosser. 1982. “Trends and Random Walks in Macroeconomic Time Series: Some Evidence and Implications.” Journal of Monetary Economics 10 (2): 139–162.CrossrefGoogle Scholar

  • O’Reilly, G., and K. Whelan. 2005. “Has Euro-Area Inflation Persistence Changed Over Time?” The Review of Economics and Statistics 87: 709–720.CrossrefGoogle Scholar

  • Ortu, F., A. Tamoni, and C. Tebaldi. 2013. “Long-Run Risk and the Persistence of Consumption Shocks.” Review of Financial Studies 26: 2876–2915.CrossrefGoogle Scholar

  • Pástor, L., and R. F. Stambaugh. 2009. “Predictive Systems: Living with Imperfect Predictors.” The Journal of Finance 64: 1583–1628.CrossrefGoogle Scholar

  • Pavlidis, E., I. Paya, and D. Peel. 2009. “The Econometrics of Exchange Rates.” In The Handbook of Econometrics Vol. 2: Applied econometrics, edited by T. C. Mills and K. Patterson, pp. 1025–1083. London: Palgrave.Google Scholar

  • Paya, I., A. Duarte, and K. Holden. 2007. “On the Relationship between Inflation Persistence and Temporal Aggregation.” Journal of Money Credit and Banking 39: 1521–1531.CrossrefGoogle Scholar

  • Paya, I., and D. Peel. 2006. “Temporal Aggregation of an ESTAR Process: Some Implications for Purchasing Power Parity Adjustment.” Journal of Applied Econometrics 21 (5): 655–668.CrossrefGoogle Scholar

  • Pivetta, F., and R. Reis. 2007. “The Persistence of Inflation in the United States.” Journal of Economic Dynamics and Control 31: 1326–1358.CrossrefGoogle Scholar

  • Richardson, M., and T. Smith. 1991. “Tests of Financial Models in the Presence of Overlapping Observations.” Review of Financial Studies 4: 227–254.CrossrefGoogle Scholar

  • Rossana, R. J., and J. J. Seater. 1992. “Aggregation, Unit Roots, and the Time-Series Structure of Manufacturing Real Wages.” International Economic Review 33: 159–179.CrossrefGoogle Scholar

  • Rossana, R. J., and J. J. Seater. 1995. “Temporal Aggregation and Economic Time Series.” Journal of Business and Economic Statistics 13: 441–451.Google Scholar

  • Sargan, J. D. 1974. “Some Discrete Approximations to Continuous Time Stochastic Models.” Journal of the Royal Statistical Society, Series B (Methodological) 36 (1): 74–90.CrossrefGoogle Scholar

  • Silvestrini, A., and D. Veredas. 2008. “Temporal Aggregation of Univariate and Multivariate Time Series Models: A Survey.” Journal of Economic Surveys 22 (3): 458–497.CrossrefGoogle Scholar

  • Stambaugh, R. F. 1999. “Predictive Regressions.” Journal of Financial Economics 54: 375–421.CrossrefGoogle Scholar

  • Tamoni, A. 2011. “The Multi-Horizon Dynamics of Risk and Returns.” SSRN eLibrary.Google Scholar

  • Taylor, A. 2001. “Potential Pitfalls for the Purchasing Power Parity Puzzle? Sampling and Specification Biases in Mean Reversion Tests of the Law of One Price.” Econometrica 69: 473–498.CrossrefGoogle Scholar

  • Telser, L. 1967. “Discrete Samples and Moving Sums in Stationary Stochastic Processes.” Journal of the American Statistical Association 62: 484–499.CrossrefGoogle Scholar

  • Tiao, G. C. 1972. “Asymptotic Behavior of Temporal Aggregates of Time Series.” Biometrika 59: 525–531.CrossrefGoogle Scholar

  • van Binsbergen, H., and R. S. J. Koijen. 2010. “Predictive Regressions: A Present-Value Approach.” The Journal of Finance 65: 1439–1471.CrossrefGoogle Scholar

  • Wei, W. W. S., and D. O. Stram. 1990. “Disaggregation of Time Series Models.” Journal of the Royal Statistical Society, Series B 52: 453–467.Google Scholar

  • Weiss, A. A. 1986. “Asymptotic Theory for ARCH Models: Estimation and Testing.” Econometric Theory 2: 107–131.CrossrefGoogle Scholar

  • Working, H. 1960. “Note on the Correlation of First Differences of Averages in a Random Chain.” Econometrica 28: 916–918.CrossrefGoogle Scholar

  • Yilmaz, K. 2003. “Martingale Property of Exchange Rates and Central Bank Interventions.” Journal of Business & Economic Statistics 21 (3): 383–395.CrossrefGoogle Scholar

  • Zellner, A. 1966. “On the Analysis of First Order Autoregressive Models with Incomplete Data.” International Economic Review 7: 72–76.CrossrefGoogle Scholar

About the article

Published Online: 2019-09-18

Citation Information: Studies in Nonlinear Dynamics & Econometrics, 20170102, ISSN (Online) 1558-3708, DOI: https://doi.org/10.1515/snde-2017-0102.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in