Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studies in Nonlinear Dynamics & Econometrics

Ed. by Mizrach, Bruce

IMPACT FACTOR 2018: 0.448
5-years IMPACT FACTOR: 0.877

CiteScore 2018: 0.85

SCImago Journal Rank (SJR) 2018: 0.552
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Mathematical Citation Quotient (MCQ) 2018: 0.07

See all formats and pricing
More options …
Ahead of print


Volume 24 (2020)

Risk shocks with time-varying higher moments

Victor Dorofeenko / Gabriel Lee / Kevin Salyer / Johannes StrobelORCID iD: https://orcid.org/0000-0002-4989-3554
Published Online: 2019-04-11 | DOI: https://doi.org/10.1515/snde-2018-0028


Within the context of a financial accelerator model, we model time-varying uncertainty (i.e. risk shocks) through the use of a mixture normal model with time variation in the weights applied to the underlying distributions characterizing entrepreneur productivity. Specifically, we model capital producers (i.e. the entrepreneurs) as either low-risk (a relatively small second moment of productivity) or high-risk (a relatively large second moment of productivity) and the fraction of both types is time-varying. We show that this modeling feature implies that the aggregate distribution of productivity shocks is non-normal and has time varying kurtosis and skewness; both of these features have important effects on equilibrium characteristics. In particular, after estimating the steady-state share and the change in the fraction of risky entrepreneurs, we show that a small change in the fraction of risky types can result in a large quantitative effect of a risk shock relative to standard models for both financial and real variables. Moreover, the bankruptcy rate and the risk premium in the economy are very sensitive to a change in the composition of entrepreneurs.

This article offers supplementary material which is provided at the end of the article.

Keywords: bankruptcy rate; Bayesian analysis; DSGE models; mixture models; time-varying uncertainty

JEL Classification: C11; E22; E32


  • Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi. 2017. “Microeconomic Origins of Macroeconomic Tail Risks.” American Economic Review 107 (1): 54–108.Web of ScienceCrossrefGoogle Scholar

  • Alderson, M. J., and B. L. Betker. 1995. “Liquidation Costs and Capital Structure.” Journal of Financial Economics 39: 45–69.CrossrefGoogle Scholar

  • Altman, E. 1984. “A Further Investigation of the Bankruptcy Cost Question.” Journal of Finance 39: 1067–1089.CrossrefGoogle Scholar

  • Arellano, C., Y. Bai, and P. Kehoe. 2016. “Financial Frictions and Fluctuations in Volatility.” Federal Reserve Bank of Minneapolis, Research, Department Staff Report 466.Google Scholar

  • Atalay, E., and T. Drautzburg. 2015. “Accounting for the Sources of Macroeconomic Tail Risks.” Mimeo.Google Scholar

  • Bachmann, R., and C. Bayer. 2013. “Wait-and-See Business Cycles?” Journal of Monetary Economics 60 (6): 704–719.Web of ScienceCrossrefGoogle Scholar

  • Bachmann, R., and C. Bayer. 2014. “Investment Dispersion and the Business Cycle.” American Economic Review 104 (4): 1392–1416.Web of ScienceCrossrefGoogle Scholar

  • Baker, S. R., N. Bloom, and S. J. Davis. 2016. “Measuring Economic Policy Uncertainty.” Quarterly Journal of Economics 131 (4): 1593–1636.Web of ScienceCrossrefGoogle Scholar

  • Balke, N. S., E. Martnez-Garca, and Z. Zeng. 2017. “Understanding the Aggregate Effects of Credit Frictions and Uncertainty.” Available at SSRN: http://dx.doi.org/10.2139/ssrn.2986461.

  • Basu, S., and B. Bundick. 2017. “Uncertainty Shocks in a Model of e Ective Demand.” Econometrica 85 (3): 937–958.CrossrefGoogle Scholar

  • Bernanke, B., and M. Gertler. 1989. “Agency Costs, Net Worth, and Business Fluctuations.” American Economic Review 79: 14–31.Google Scholar

  • Bernanke, B., and M. Gertler. 1990. “Financial Fragility and Economic Performance.” Quarterly Journal of Economics 105: 87–114.CrossrefGoogle Scholar

  • Bernanke, B., M. Gertler, and S. Gilchrist. 1999. “The Financial Accelerator in a Quantitative Business Cycle Framework.” In: Handbook of Macroeconomics, edited by J. B. Taylor and M. Woodford, Vol. 1. Elsevier Science, B.V.Google Scholar

  • Bloom, N. 2009. “The Impact of Uncertainty Shocks.” Econometrica 77: 623–685.CrossrefWeb of ScienceGoogle Scholar

  • Bloom, N. 2014. “Fluctuations in Uncertainty.” Journal of Economic Perspectives 28: 153–176.CrossrefWeb of ScienceGoogle Scholar

  • Bloom, N., F. Guvenen, and S. Salgado. 2016. “Skewed Business Cycles.” Stanford University mimeo.Google Scholar

  • Bloom, N., M. Floetotto, N. Jaimovich, N. Saporta-Eksten, and S. Terry. 2018. “Really Uncertain Business Cycles.” Econometrica 86: 1031–1065Web of ScienceCrossrefGoogle Scholar

  • Cappuccio, N., D. Lubian, and D. Raggi. 2004. “MCMC Bayesian Estimation of a Skew-GED Stochastic Volatility Model.” Studies in Nonlinear Dynamics & Econometrics 8 (2): 1–29.Google Scholar

  • Carlstrom, C., and T. Fuerst. 1997. “Agency Costs, Net Worth, and Business Fluctuations: A Computable General Equilibrium Analysis.” American Economic Review 87: 893–910.Google Scholar

  • Cesa-Bianchi, A., and E. Fernandez-Corugedo. 2017. “Uncertainty, Financial Frictions and Nominal Rigidities: A Quantitative Investigation.” IMF Working Paper 17/211.Google Scholar

  • Christiano, L., R. Motto, and M. Rostagno. 2014. “Risk Shocks.” American Economic Review 104: 27–65.CrossrefWeb of ScienceGoogle Scholar

  • Chugh, S. K. 2016. “Firm Risk and Leverage-Based Business Cycles.” Review of Economic Dynamics 20: 111–131.CrossrefWeb of ScienceGoogle Scholar

  • Del Negro, M., and F. Schorfheide. 2008. “Forming Priors for DSGE Models (and how it Affects the Assessment of Nominal Rigidities).” Journal of Monetary Economics 55: 1191–1208.Web of ScienceCrossrefGoogle Scholar

  • Dmitriev, M., and J. Hoddenbagh. 2017. “The Financial Accelerator and the Optimal State-Dependent Contract.” Review of Economic Dynamics 24: 43–65.CrossrefWeb of ScienceGoogle Scholar

  • Dorofeenko, V., G. Lee, and K. Salyer. 2008. “Time-Varying Uncertainty and the Credit Channel.” Bulletin of Economic Research 60: 375–403.Web of ScienceCrossrefGoogle Scholar

  • Dorofeenko, V., G. Lee, and K. Salyer. 2014. “Risk Shocks and Housing Supply: A Quantitative Analysis.” Journal of Economic Dynamics and Control 45: 194–219.CrossrefWeb of ScienceGoogle Scholar

  • Fisher, J. D. M. 1999. “Credit Market Imperfections and the Heterogeneous Response of Firms to Monetary Shocks.” Journal of Money, Credit, and Banking 31 (2): 187–211.CrossrefGoogle Scholar

  • Gilchrist, S., J. Sim, and E. Zakajsek. 2014. “Uncertainty, Financial Frictions, and Investment.” Working Paper 20038, NBER.Google Scholar

  • Gomme, P., R. Rogerson, P. Rupert, and R. Wright. 2004. “The Business Cycle and the Life Cycle.” NBER Macroeconomics Annual 19.Google Scholar

  • Gomme, P., B. Ravikumar, and P. Rupert. 2011. “The Return to Capital and the Business Cycle.” Review of Economic Dynamics 14: 262–278.Web of ScienceCrossrefGoogle Scholar

  • Gorodnichenko, Y., and S. Ng. 2017. “Level and Volatility Factors in Macroeconomic Data.” NBER Working Paper No. 23672.Google Scholar

  • Greenwood, J., Z. Hercowitz, and P. Krusell. 1997. “Long-Run Implications of Investment-Specific Technological Change.” American Economic Review 78: 342–362.Google Scholar

  • Greenwood, J., Z. Hercowitz, and P. Krusell. 2000. “The Role of Investment-Specific Technological Change in the Business Cycle.” European Economic Review 44: 91–115.CrossrefGoogle Scholar

  • Guvenen, F., F. Karahan, S. Ozkan, and J. Song. 2015. “What Do Data on Millions of U.S. Workers Reveal about Life-Cycle Earnings Risk?” Mimeo.Google Scholar

  • Jurado, K., S. C. Ludvigson, and S. Ng. 2015. “Measuring Uncertainty.” American Economic Review 105 (3): 1177–1216.CrossrefWeb of ScienceGoogle Scholar

  • Justiniano, A., and G. Primiceri. 2008. “The Time Varying Volatility of Macroeconomic Fluctuations.” American Economic Review 98: 604–41.Web of ScienceCrossrefGoogle Scholar

  • Kozeniauskas, N., A. Orlik, and L. Veldkamp. 2016. “The Common Origin of Uncertainty Shocks.” NBER Working Paper No. 22384.Google Scholar

  • Kozlowski, J., L. Veldkamp, and V. Venkateswaran. 2015. “The Tail that Wags the Economy: Belief-Driven Business Cycles and Persistent Stagnation.” New York University mimeo.Google Scholar

  • Leduc, S., and Z. Liu. 2016. “Uncertainty Shocks are Aggregate Demand Shocks.” Journal of Monetary Economics 82: 20–35.Web of ScienceCrossrefGoogle Scholar

  • Ludvigson, S., M. Sai, and S. Ng. 2016. “Uncertainty and Business Cycles.” New York University mimeo.Google Scholar

  • Mandelbrot, B. B. 1963. “The Variation of Certain Speculative Prices.” Journal of Business 36: 394–419.CrossrefGoogle Scholar

  • Orlik, A., and Veldkamp, L. 2015. “Understanding Uncertainty Shocks and the Role of Black Swans.” New York University mimeo.Google Scholar

  • Yang, M. 2011. “Volatility Feedback and Risk Premium in GARCH Models with Generalized Hyperbolic Distributions.” Studies in Nonlinear Dynamics and Econometrics 15: 1558–3708.Google Scholar

About the article

Published Online: 2019-04-11

Citation Information: Studies in Nonlinear Dynamics & Econometrics, 20180028, ISSN (Online) 1558-3708, DOI: https://doi.org/10.1515/snde-2018-0028.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in