Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studies in Nonlinear Dynamics & Econometrics

Ed. by Mizrach, Bruce


IMPACT FACTOR 2018: 0.448
5-years IMPACT FACTOR: 0.877

CiteScore 2018: 0.85

SCImago Journal Rank (SJR) 2018: 0.552
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Mathematical Citation Quotient (MCQ) 2018: 0.07

Online
ISSN
1558-3708
See all formats and pricing
More options …
Ahead of print

Issues

Volume 24 (2020)

A threshold mixed count time series model: estimation and application

Mardi Dungey / Vance L. Martin / Chrismin Tang / Andrew Tremayne
Published Online: 2019-03-26 | DOI: https://doi.org/10.1515/snde-2018-0029

Abstract

A new class of integer time series models is proposed to capture the dynamic transmission of count processes over time. The approach extends existing integer mixed autoregressive-moving average models (INARMA) by allowing for shifts in the dynamics of the count process through regime changes, referred to as a threshold integer autoregressive-moving average model (TINARMA). An efficient method of moments estimator is proposed, with standard errors based on subsampling, as maximum likelihood methods are infeasible for TINARMA processes. Applying the framework to global banking crises over 200 years of data, the empirical results show strong evidence of autoregressive and moving average dynamics which vary across systemic and nonsystemic regimes over time. Coherent forecast distributions are also produced with special attention given to the Great Depression and the more recent Global Financial Crisis.

Keywords: banking crises; binomial thinning; count time series; efficient method of moments; threshold

JEL Classification: C150; C220; C250

References

  • Al-Osh, M., and A. A. Alzaid. 1987. “First-order Integer-valued Autoregression (INAR(1)) Process.” Journal of Time Series Analysis 8: 261–275.CrossrefGoogle Scholar

  • Al-Osh, M., and A. A. Alzaid. 1988. “Integer-Valued Moving Average (INMA) Process.” Statistical Papers 29: 281–300.CrossrefGoogle Scholar

  • Alzaid, A. A., and M. Al-Osh. 1990. “An Integer-Valued pth Autoregressive Structure (INAR(p)) Process.” Journal of Applied Probability 27: 314–324.CrossrefGoogle Scholar

  • Bai, J., and P. Perron. 1998. “Estimating and Testing Linear Models with Multiple Structural Changes.” Econometrica 66: 47–78.CrossrefGoogle Scholar

  • Bordo, M. J., B. Eichengreen, D. Klingebield, and M. S. Martinez-Peria. 2001. “Is the Crisis Problem Growing More Severe?” Economic Policy 16: 53–82.Google Scholar

  • Brännäs, K., and A. Hall. 2001. “Estimation in Integer-valued Moving Average Models.” Applied Stochastic Models in Business and Industry 17: 277–291.CrossrefGoogle Scholar

  • Brännäs, K., and J. Hellström. 2001. “Generalized Integer-Valued Autoregression.” Econometric Reviews 20: 425–443.CrossrefGoogle Scholar

  • Brännäs, K., and A. M. M. Shahiduzzaman Quoreshi. 2010. “Integer-Valued Moving Average Modelling of the Number of Transactions in Stocks.” Applied Financial Economics 20: 1429–1440.CrossrefGoogle Scholar

  • Brännäs, K., J. Hellström, and J. Nordstrom. 2002. “A New Approach to Modelling and Forecasting Monthly Guest Nights in Hotels.” International Journal of Forecasting 18: 19–30.CrossrefGoogle Scholar

  • Bu, R., K. Hadri, and B. P. M. McCabe. 2008. “Conditional Maximum Likelihood Estimation of Higher-Order Integer-Valued Autoregressive Processes.” Journal of Time Series Analysis 29: 973–994.CrossrefGoogle Scholar

  • Cardinal, M., R. Roy, and J. Lambert. 1999. “On the Application of Integer-Valued Time Series Models for the Analysis of Disease Incidence.” Statistics in Medicine 18: 2025–2039.CrossrefGoogle Scholar

  • Chen, W. W., and R. S. Deo. 2006. “Estimation of Mis-specified Long Memory Models.” Journal of Econometrics 134: 257–281.CrossrefGoogle Scholar

  • Du, J. G., and Y. Li. 1991. “The Integer-Valued Autoregressive (INAR(p)) Model.” Journal of Time Series Analysis 12: 129–142.CrossrefGoogle Scholar

  • Duffie, D., and K. Singleton. 1993. “Simulated Moments Estimator of Markov Models of Asset Prices.” Econometrica 61: 929–962.CrossrefGoogle Scholar

  • Dungey, M., J. P. A. M. Jacobs, and Lestano. 2015. “The Internationalisation of Financial Crises: Banking and Currency Crises 1883-2008.” North American Journal of Economics and Finance 32: 29–47.CrossrefGoogle Scholar

  • Freeland, K. R., and B. P. M. McCabe. 2004. “Forecasting Discrete Values Low Count Time Series.” International Journal of Forecasting 20: 427–434.CrossrefGoogle Scholar

  • Gallant, A. R., and G. Tauchen. 1996. “Which Moments to Match?” Econometric Theory 12: 657–681.CrossrefGoogle Scholar

  • Gonzalo, J., and M. Wolf. 2005. “Subsampling Inference in Threshold Autoregressive Models.” Journal of Econometrics 127: 201–224.CrossrefGoogle Scholar

  • Gouriéroux, C., and A. Monfort. 1994. Simulation Based Econometric Methods. CORE Discussion Paper.Google Scholar

  • Gouriéroux, C., A. Monfort, and E. Renault. 1993. “Indirect Inference.” Journal of Applied Econometrics 8: S85–S118.Google Scholar

  • Hansen, L. P. 1982. “Large Sample Properties of Generalised Method of Moments Estimators.” Econometrica 50: 1029–1054.CrossrefGoogle Scholar

  • Hansen, B. E. 2000. “Testing for Structural Change in Conditional Models.” Journal of Econometrics 97: 93–115.CrossrefGoogle Scholar

  • Jung, R. C., and A. R. Tremayne. 2006a. “Coherent Forecasting in Integer Time Series Models.” International Journal of Forecasting 22: 223–238.CrossrefGoogle Scholar

  • Jung, R. C., and A. R. Tremayne. 2006b. “Binomial Thinning Models for Integer Time Series.” Statistical Modelling 6: 81–96.CrossrefGoogle Scholar

  • Jung, R. C., and A. R. Tremayne. 2011. “Convolution-closed Models for Count Time Series with applications.” Journal of Time Series Analysis 32: 268–280.CrossrefGoogle Scholar

  • Jung, R. C., G. Ronning, and A. R. Tremayne. 2005. “Estimation in Conditional First Order Autoregression with Discrete Support.” Statistical Papers 46: 195–224.CrossrefGoogle Scholar

  • Kalemli-Ozcan, S., E. Papaioannou, and F. Perri. 2013. “Global Banks and Crisis Transmission.” Journal of International Economics 89: 495–510.CrossrefGoogle Scholar

  • Klimko, L. A., and P. I. Nelson. 1978. “On Conditional Least Squares Estimation for Stochastic Processes.” Annals of Statistics 6: 629–642.CrossrefGoogle Scholar

  • Laeven, L., and F. Valencia. 2008. “Systemic Banking Crises: A New Database.” IMF Working Paper WP/08/224.Google Scholar

  • Laeven, L., and F. Valencia. 2013. “Systemic Banking Crises Database.” IMF Economic Review 61: 225–270.CrossrefGoogle Scholar

  • Maiti, R., A. Biswas, and S. Das. 2016. “Coherent Forecasting for Count Time Series Using Box-Jenkins AR(p) Model.” Statistics Neerlandica 70: 123–145.CrossrefGoogle Scholar

  • Martin, V. L., S. Hurn, and D. Harris. 2013. Econometric Modelling with Time Series. Cambridge: Cambridge University Press.Google Scholar

  • Martin, V. L., A. R. Tremayne, and R. C. Jung. 2014. “Efficient Method of Moments Estimators for Integer Time Series Models.” Journal of Time Series Analysis 35: 491–516.CrossrefGoogle Scholar

  • McCabe, B. P. M., and G. M. Martin. 2005. “Bayesian Predictions of Low Count Time Series.” International Journal of Forecasting 21: 315–330.CrossrefGoogle Scholar

  • McCabe, B. P. M., G. M. Martin, and D. Harris. 2011. “Efficient Probabilistic Forecasts for Counts.” Journal of the Royal Statistical Society B 73: 253–272.CrossrefGoogle Scholar

  • McKenzie, E. 1988a. “The Distributional Structure of Finite Moving Average Processes.” Journal of Applied Probability 25: 313–321.CrossrefGoogle Scholar

  • McKenzie, E. 1988b. “Some ARMA Models for Dependent Sequences of Poisson Counts.” Advances in Applied Probability 20: 822–835.CrossrefGoogle Scholar

  • Möller, T. A. 2016. “Self-Exciting Threshold Models for Time Series of Counts with a Finite Range.” Stochastic Models 32: 77–98.CrossrefGoogle Scholar

  • Möller, T. A., M. E. Silva, C. H. Weiß, M. G. Scotto, and I. Pereira. 2016. “Self-exciting Threshold Binomial Autoregressive Processes.” AStA Advances in Statistical Analysis 100: 369–400.CrossrefGoogle Scholar

  • Monteiro, M., M. G. Scotto, and I. Pereira. 2012. “Integer-Valued Self-Exciting Threshold Autoregressive Processes.” Communications in Statistics – Theory and Methods 41: 2717–2737.CrossrefGoogle Scholar

  • Politis, D. N., J. P. Romano, and M. Wolf. 1999. Subsampling. New York: Springer-Verlag.Google Scholar

  • Rao, Y., and B. P. M. McCabe. 2016. “Real-Time Surveillance for Abnormal Events: the Case of Influenza Outbreaks.” Statistics in Medicine 35: 2206–2220.CrossrefGoogle Scholar

  • Reinhart, C., and K. Rogoff. 2009. This Time is Different: Eight Centuries of Financial Folly. USA: Princeton University Press.Google Scholar

  • Reinhart, C., and K. Rogoff. 2013. “Banking Crises: An Equal Opportunity Menace.” Journal of Banking and Finance 37: 4557–4573.CrossrefGoogle Scholar

  • Smith, A. A. 1993. “Estimating Nonlinear Time Series Models Using Simulated Vector Autoregressions.” Journal of Applied Econometrics 8: S63–S84.Google Scholar

  • Steutel, F. W., and K. van Harn. 1979. “Discrete Analogues of Self-Decomposability and Stability.” Annals of Probability 7: 893–899.CrossrefGoogle Scholar

  • Tong, H. 1990. Non-Linear Time Series: A Dynamical System Approach. New York: Oxford University Press.Google Scholar

  • Wang, C., H. Liu, J.-F. Yao, R. A. Davis, and W. K. Li. 2014. “Self-Excited Threshold Poisson Autoregression.” Journal of the American Statistical Association 109: 777–787.CrossrefGoogle Scholar

  • Weiß, C. H. 2008. “Thinning Operations for Modelling Time Series of Counts – A Survey.” AStA Advances in Statistical Analysis 92: 319–341.CrossrefGoogle Scholar

  • Weiß, C. H. 2018. An Introduction to Discrete-Valued Time Series. Hoboken: John Wiley.Google Scholar

  • Yu, P. 2014. “The Bootstrap in Threshold Regression.” Econometric Theory 30: 676–714.CrossrefGoogle Scholar

About the article

Published Online: 2019-03-26


Funding Source: Australian Research Council

Award identifier / Grant number: DP14012137

Funder Name: Australian Research Council, Funder Id: 10.13039/501100000923, Grant Number: DP14012137.


Citation Information: Studies in Nonlinear Dynamics & Econometrics, 20180029, ISSN (Online) 1558-3708, DOI: https://doi.org/10.1515/snde-2018-0029.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Christian H. Weiß, Martin H.-J. M. Feld, Naushad Mamode Khan, and Yuvraj Sunecher
Stats, 2019, Volume 2, Number 2, Page 284

Comments (0)

Please log in or register to comment.
Log in