Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studies in Nonlinear Dynamics & Econometrics

Ed. by Mizrach, Bruce

IMPACT FACTOR 2018: 0.448
5-years IMPACT FACTOR: 0.877

CiteScore 2018: 0.85

SCImago Journal Rank (SJR) 2018: 0.552
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Mathematical Citation Quotient (MCQ) 2018: 0.07

See all formats and pricing
More options …
Ahead of print


Volume 24 (2020)

Conventional and unconventional monetary policy reaction to uncertainty in advanced economies: evidence from quantile regressions

Christina Christou / Ruthira Naraidoo / Rangan Gupta
Published Online: 2019-12-16 | DOI: https://doi.org/10.1515/snde-2018-0056


This paper investigates how the Federal Reserve (Fed) and the Bank of England, Bank of Japan and the European Central Bank reacted in the aftermath of the financial crisis by making use of both conditional and unconditional interest rate quantiles regressions and data on shadow short rate of interest and a measure of uncertainty. Firstly, the unconditional quantile regression offers some support for increased reaction by the Fed as the ZLB is approached. Secondly, the decreased reaction of the Fed and other monetary policy makers towards uncertainty particularly at lower conditional quantiles of interest rates lends support to expansionary mechanism in place during this time. Hence uncertainty is key to policy reaction, and more so during episodes of crisis.

This article offers supplementary material which is provided at the end of the article.

Keywords: advanced economies; conditional and unconditional quantile regressions; interest rate rule; shadow rate of interest; uncertainty; zero lower bound

JEL Classification: C22; E52


  • Agnello, L., V. Castro, G. Dufrénot, F. Jawadi, and R. M. Sousa. 2018. Unconventional Monetary Reaction Functions. University of Minho, Mimeo.Google Scholar

  • Baker, S., N. Bloom, and S. Davis. 2016. “Measuring Economic Policy Uncertainty.” The Quarterly Journal of Economics 131 (4): 1593–1636.CrossrefGoogle Scholar

  • Bernanke, Ben S., and Vincent R. Reinhart. 2004. “Conducting Monetary Policy at Very Low Short-Term Interest Rates.” American Economic Review 94: 85–90.CrossrefGoogle Scholar

  • Blinder, I. S. 1999. Central Banking in Theory and Practice. 1st ed. Cambridge, MA: The MIT Press.Google Scholar

  • Bloom, N. 2009. “The Impact of Uncertainty Shocks.” Econometrica 77: 623–685.CrossrefGoogle Scholar

  • Brainard, W. 1967. “Uncertainty and the Effectiveness of Policy.” American Economic Review 58 (2): 411–425.Google Scholar

  • Caggiano, G., E. Castelnuovo, and G. Nodari. 2018. “Risk Management-Driven Policy Rate Gap.” CESifo Working Papers, no. 7177.Google Scholar

  • Castro, V., and R. M. Sousa. 2012. “How do Central Banks React to Wealth Composition and Asset Prices?.” Economic Modelling 29 (3): 641–653.CrossrefGoogle Scholar

  • Chen, J. 2015. “Factor Instrumental Variable Quantile Regression.” Studies in Nonlinear Dynamics & Econometrics 19 (1): 71–92.Google Scholar

  • Chen, J., and M. Kashiwagi. 2017. “The Japanese Taylor Rule Estimated using Censored Quantile Regressions.” Empirical Economics 52 (1): 357–371.CrossrefGoogle Scholar

  • Chevapatrakul, T., T. Kim, and P. Mizen. 2009. “The Taylor Principle and Monetary Policy Approaching a Zero Bound on Nominal Rates: Quantile Regression Results for the United States and Japan.” Journal of Money, Credit and Banking 41: 1705–1723.CrossrefGoogle Scholar

  • Christou, C., R. Naraidoo, R. Gupta, and W-J. Kim. Forthcoming. Monetary Policy Reaction Functions of the TICKs: A Quantile Regression Approach. Emerging Markets Finance and Trade. DOI: https://doi.org/10.1080/1540496X.2017.1422429.

  • Carlstrom, C., and T. Fuerst. 2000. Forward-looking versus backward-looking Taylor rules. Working Paper No. 009, Federal Reserve Bank of Cleveland.Google Scholar

  • Clarida, R., J. Gali, and M. Gertler. 2000. “Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory.” Quarterly Journal of Economics 115 (1): 147–180.CrossrefGoogle Scholar

  • Colombo, V. 2013. “Economic Policy Uncertainty in the US: Does it Matter for the Euro Area?” Economics Letters 121: 39–42.CrossrefGoogle Scholar

  • Conley, T., and D. Galenson. 1998. “Nativity and Wealth in Mid-Nineteenth-Century Cities.” Journal of Economic History 58 (2): 468–493.CrossrefGoogle Scholar

  • Cukierman, A., and S. Gerlach. 2003. “The Inflation Bias Revisited; Theory and Some International Evidence.” The Manchester School 71 (5): 541–565.CrossrefGoogle Scholar

  • Dolado, J., R. María Dolores, and F. J. Ruge-Murcia. 2004. “Non-Linear Monetary Policy Rules: Some New Evidence for the US.” Studies in Nonlinear Dynamics and Econometrics 8: article 2.Google Scholar

  • Dolado, J., María-Dolores, R., and M. Naveira. 2005. “Are Monetary- Policy Reaction Functions Asymmetric ?: The Role of Nonlinearity in the Phillips Curve.” European Economic Review 49: 485–503.CrossrefGoogle Scholar

  • Ehrmann, M., and F. Smets. 2003. “Uncertain Potential Output: Implications for Monetary Policy.” Journal of Economic Dynamics and Control 27 (9): 1611–1638.CrossrefGoogle Scholar

  • Estrella, A., and F. S. Mishkin. 2000. “Rethinking the Role of NAIRU in Monetary Policy: Implications of Model Formulation and Uncertainty.” National Bureau of Economic Research Working Paper, No. 6518.Google Scholar

  • Evans, C., J. D. M. Fisher, F. Gourio, and S. Krane. 2015. “Risk Management for Monetary Policy Near the Zero Lower Bound, Brookings Papers on Economic Activity,” Spring, 141–196.Google Scholar

  • Firpo, S., N. M. Fortin, and T. Lemieux. 2009. “Unconditional Quantile Regressions.” Econometrica 77: 953–973.CrossrefGoogle Scholar

  • Giannoni, M. P. 2002. “Does Model Uncertainty Justify Caution? Robust Optimal Monetary Policy in a Forward Looking Model.” Macroeconomic Dynamics 6 (6): 111–144.CrossrefGoogle Scholar

  • Gosling, A., S. Machin, and C. Meghir. 2000. “The Changing Distribution of Male Wages in the UK.” Review of Economic Studies 67 (4): 635–666.CrossrefGoogle Scholar

  • Greenspan, A. 2003. “Opening Remarks,” Speech at the Symposium on Monetary Policy and Uncertainty: Adapting to a Changing Economy, Jackson Hole, Wyoming, August.Google Scholar

  • Gupta, R., C.-K.-M. Lau, and M. E. Wohar. 2018. “The Impact of US Uncertainty on the Euro Area in Good and Bad Times: Evidence from a Quantile Structural Vector Autoregressive Model.” Empirica. DOI: https://doi.org/10.1007/s10663-018-9400-3.

  • Gupta, R., J. Ma, M. Risse, and M. E. Wohar. Forthcoming. “Common Business Cycles and Volatilities in US States and MSAs: The Role of Economic Uncertainty.” Journal of Macroeconomics.Google Scholar

  • Hayashi, F. 2000. Econometrics. 1st ed. Princeton, NJ: Princeton University Press.Google Scholar

  • Hansen, L. P. 1982. “Large Sample Properties of Generalized Method of Moments Estimators.” Econometrica 50: 1029–1054.CrossrefGoogle Scholar

  • Jawadi, F., and R. M. Sousa. 2013. “Money Demand in the Euro Area, the US and the UK: Assessing the Role of Nonlinearity.” Economic Modelling 32: 507–515.CrossrefGoogle Scholar

  • Jawadi, F., and R. M. Sousa. 2014. “Modelling the Relationship between Consumption and Wealth in the US, the UK and the Euro Area.” Revue d’ Economie Politique 124 (4): 639–652.CrossrefGoogle Scholar

  • Jawadi, F., S. K. Mallick, and R. M. Sousa. 2014. “Nonlinear Monetary Policy Reaction Functions in Large Emerging Economies: The Case of Brazil and China.” Applied Economics 46 (9): 973–984.CrossrefGoogle Scholar

  • Jawadi, F., R. M. Sousa, and R. Traverso. 2017. “On the Macroeconomic Impact and the Wealth Effects of Unconventional Monetary Policy.” Macroeconomic Dynamics 21 (5): 1189–1204.CrossrefGoogle Scholar

  • Jones, P. M., and E. Olson. 2015. “The International Effects of US Uncertainty.” International Journal of Finance and Economics 20: 242–252.CrossrefGoogle Scholar

  • Jurado, K., S. C. Ludvigson, and S. Ng. 2015. “Measuring Uncertainty.” The American Economic Review 105 (3): 1177–1215.CrossrefGoogle Scholar

  • Kohn, Donald L. 1996. “Commentary on Charles Freeman: What Operating Procedures Should Be Adopted to Maintain Price Stability? Practical Issues” 1996 Symposium Proceedings: Achieving Price Stability, Federal Reserve Bank of Kansas City, Jackson Hole, Wyoming.Google Scholar

  • Krippner, L. 2013. “A Tractable Framework for Zero Lower Bound Gaussian Term Structure Models.” Discussion Paper, Reserve Bank of New Zealand, 2013/02.Google Scholar

  • Kuttner, Kenneth N., and Adam S. Posen. 2001. “The Great Recession: Lessons from Macroeconomic Policy from Japan.” Brookings Papers on Economic Activity 32: 93–186.Google Scholar

  • Lee, S. 2007. “Endogeneity in Quantile Regression Models: A Control Function Approach.” Journal of Econometrics 141: 1131–1158.CrossrefGoogle Scholar

  • Lee, J. H. 2016. “Predictive Quantile Regression with Persistent Covariates: IVX-QR Approach.” Journal of Econometrics 192: 105–118.CrossrefGoogle Scholar

  • Leon Li, M.-F., and M.-Y. Yen. 2011. “Reexamining Dynamic Covariance Risk in Global Stock Markets using Quantile Regression Analysis.” Acta Oeconomica 61: 33–59.CrossrefGoogle Scholar

  • Liu, X. 2018. “How is the Taylor Rule Distributed under Endogenous Monetary Regimes?” International Review of Finance 18 (2): 305–316.CrossrefGoogle Scholar

  • Ma, J., E. Olson, and M. E. Wohar. 2018. “Nonlinear Taylor Rules: Evidence from a Large Dataset.” Studies in Nonlinear Dynamics & Econometrics 22 (1): 1–14.Google Scholar

  • Machado, J. A. F., and J. Sousa. 2005. “Asset Prices and Macroeconomic Fundamentals in the Euro Area.” Banco de Portugal Economic Bulletin Autumn: 1–6.Google Scholar

  • Martin, C., and C. Costas Milas. 2009. “Uncertainty and Monetary Policy Rules In The United States.” Economic Inquiry 47 (2): 206–215.CrossrefGoogle Scholar

  • Miles, W., and S. Schreyer. 2012. “Is Monetary Policy Non-Linear in Indonesia, Korea, Malaysia, and Thailand? A Quantile Regression Analysis.” Asian-Pacific Economic Literature 26: 155–166.CrossrefGoogle Scholar

  • Miles, W., and S. Schreyer. 2014. “Is Monetary Policy Non-Linear in Latin America? A Quantile Regression Approach to Brazil, Chile, Mexico and Peru.” Journal of Developing Areas 48 (2): 169–183.CrossrefGoogle Scholar

  • Mishkin, F. S. 2010. “Monetary Policy Flexibility, Risk Management, and Financial Disruptions.” Journal of Asian Economics 21 (3): 242–246.CrossrefGoogle Scholar

  • Naraidoo, R., and R. Raputsoane. 2015. “Financial Markets and the Response of Monetary Policy to Uncertainty in South Africa.” Empirical Economics 49 (1): 255–278.CrossrefGoogle Scholar

  • Orphanides, A., R. D. Porter, D. Reifschneider, R. Tetlow, and F. Finan. 2000. “Errors in the Measurement of the Output Gap and The Design of Monetary Policy.” Journal of Economics and Business 52 (1–2): 117–141.CrossrefGoogle Scholar

  • Peersman, G., and F. Smets. 1999. “The Taylor Rule: A Useful Monetary Policy Benchmark for the Euro Area?” International Finance 2 (1): 85–116.CrossrefGoogle Scholar

  • Rudebusch, G. D. 2001. “Is the Fed too Timid? Monetary Policy in an Uncertain World.” Review of Economics and Statistics 83 (2): 203–217.CrossrefGoogle Scholar

  • Ruge-Murcia, F. 2003. “Does the Barro–Gordon Model Explain the Behavior of US Inflation? A Reexamination of the Empirical Evidence.” Journal of Monetary Economics 50 (6): 1375–1390.CrossrefGoogle Scholar

  • Sonderstrom, U. 2002. “Monetary Policy with Uncertain Parameters,” Scandinavian Journal of Economics 104 (1): 125–145.CrossrefGoogle Scholar

  • Sousa, J., and R. M. Sousa. 2017. “Predicting Risk Premium Under Changes in the Conditional Distribution of Stock Returns.” Journal of International Financial Markets, Institutions & Money 50: 204–218.CrossrefGoogle Scholar

  • Surico, P. 2007. “The Fed’s Monetary Policy Rule and US Inflation: The Case of Asymmetric Preferences.” Journal of Economic Dynamics and Control 31: 305–324.CrossrefGoogle Scholar

  • Svensson, L. E. O. 1999. “Inflation Targeting as a Monetary Policy Rule.” Journal of Monetary Economics 43 (3): 607–654.CrossrefGoogle Scholar

  • Taylor, J. B. 1993. “Discretion versus Policy Rules in Practice.” Carnegie-Rochester Conference Series on Public Policy 39 (1): 195–214.CrossrefGoogle Scholar

  • Taylor, J. 1999. “A Quantile Regression Approach to Estimating the Distribution of Multiperiod Returns.” Journal of Derivatives 7 (1): 64–78.CrossrefGoogle Scholar

  • Wolters, M. 2012. “Estimating Monetary Policy Reaction Functions using Quantile Regression.” Journal of Macroeconomics 34: 342–361.CrossrefGoogle Scholar

  • Wu, J. C., and F. D. Xia. 2016. “Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound.” Journal of Money, Credit and Banking 48 (2–3): 253–291.CrossrefGoogle Scholar

About the article

Published Online: 2019-12-16

Funding Source: Open University of Cyprus

Award identifier / Grant number: 2018/20

This work was supported by the Open University of Cyprus, Funder Id: http://dx.doi.org/10.13039/100012996, Grand No: 2018/20, Essays in Economics.

Citation Information: Studies in Nonlinear Dynamics & Econometrics, 20180056, ISSN (Online) 1558-3708, DOI: https://doi.org/10.1515/snde-2018-0056.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in