Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studies in Nonlinear Dynamics & Econometrics

Ed. by Mizrach, Bruce

IMPACT FACTOR 2018: 0.448
5-years IMPACT FACTOR: 0.877

CiteScore 2018: 0.85

SCImago Journal Rank (SJR) 2018: 0.552
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Mathematical Citation Quotient (MCQ) 2018: 0.07

See all formats and pricing
More options …
Ahead of print


Volume 24 (2020)

Outliers and misleading leverage effect in asymmetric GARCH-type models

M. Angeles Carnero / Ana Pérez
Published Online: 2019-12-19 | DOI: https://doi.org/10.1515/snde-2018-0073


This paper illustrates how outliers can affect both the estimation and testing of leverage effect by focusing on the TGARCH model. Three estimation methods are compared through Monte Carlo experiments: Gaussian Quasi-Maximum Likelihood, Quasi-Maximum Likelihood based on the Student-t likelihood and Least Absolute Deviation method. The empirical behavior of the t-ratio and the Likelihood Ratio tests for the significance of the leverage parameter is also analyzed. Our results put forward the unreliability of Gaussian Quasi-Maximum Likelihood methods in the presence of outliers. In particular, we show that one isolated outlier could hide true leverage effect whereas two consecutive outliers bias the estimated leverage coefficient in a direction that crucially depends on the sign of the first outlier and could lead to wrongly reject the null of no leverage effect or to estimate asymmetries of the wrong sign. By contrast, we highlight the good performance of the robust estimators in the presence of one isolated outlier. However, when there are patches of outliers, our findings suggest that the sizes and powers of the tests as well as the estimated parameters based on robust methods may still be distorted in some cases. We illustrate these results with two series of daily returns.

This article offers supplementary material which is provided at the end of the article.

Keywords: AVGARCH; conditional heteroscedasticity; QMLE; robust estimators; TGARCH


  • Ait-Sahalia, Y., J. Fan, and Y. Li. 2013. “The Leverage Effect Puzzle: Disentangling Sources of Bias at High Frequency.” Journal of Financial Economics 109 (1): 224–249.Web of ScienceCrossrefGoogle Scholar

  • Andersen, T., T. Bollerslev, F. Diebold, and H. Ebens. 2001. “The Distribution of Realized Stock Return Volatility.” Journal of Financial Economics 61 (1): 43–76.CrossrefGoogle Scholar

  • Bandi, F., and R. Reno. 2012. “Time-Varying Leverage Effects.” Journal of Econometrics 169 (1): 94–113.CrossrefWeb of ScienceGoogle Scholar

  • Berkes, I., and L. Horvath. 2004. “The Efficiency of the Estimators of the Parameters in Garch Processes.” The Annals of Statistics 32 (2): 633–655.CrossrefGoogle Scholar

  • Black, R. 1976. “Studies in stock Price Volatility Changes.” Proceedings of the 1976 Business Meeting of the Business and Economics Statistics Sections, 177–181.Google Scholar

  • Carnero, M., D. Peña, and E. Ruiz. 2007. “Effects of Outliers on the Identification and Estimation of Garch Models.” Journal of Time Series Analysis 28 (4): 471–497.Web of ScienceCrossrefGoogle Scholar

  • Carnero, M., D. Peña, and E. Ruiz. 2012. “Estimating Garch Volatility in the Presence of Outliers.” Economics Letters 114 (1): 86–90.Web of ScienceCrossrefGoogle Scholar

  • Carnero, M., A. Pérez, and E. Ruiz. 2016. “Identification of Asymmetric Conditional Heteroscedasticity in the Presence of Outliers.” SERIEs: Journal of the Spanish Economic Association 7 (1): 179–201.Web of ScienceCrossrefGoogle Scholar

  • Chkili, W., S. Hammoudeh, and D. Nguyen. 2014. “Volatility Forecasting and Risk Management for Commodity Markets in the Presence of Asymmetry and Long Memory.” Energy Economics 41: 1–18.CrossrefWeb of ScienceGoogle Scholar

  • Creal, D., S. J. Koopman, and A. Lucas. 2013. “Generalized Autoregressive Score Models with Applications.” Journal of Applied Econometrics 28 (5): 777–795.Web of ScienceCrossrefGoogle Scholar

  • Cumby, R., and J. Huizinga. 1992. “Testing the Autocorrelation Structure of Disturbances in Ordinary Least Squares and Instrumental Variables Regressions.” Econometrica 60 (1): 185–195.CrossrefGoogle Scholar

  • Diebold, F. X. 1988. Empirical Modeling of Exchange Rate Dynamics. Berlin/Heidelberg/New York: Springer-Verlag.Google Scholar

  • Ding, Z., C. Granger, and R. Engle. 1993. “A Long Memory Property of Stock Market Returns and a New Model.” Journal of Empirical Finance 1 (1): 83–106.CrossrefGoogle Scholar

  • Engle, R. 2011. “Long Term Skewness and Systematic Risk.” Journal of Financial Econometrics 9 (3): 437–468.CrossrefGoogle Scholar

  • Fan, J., L. Qi, and D. Xiu. 2014. “Quasi-Maximum Likelihood Estimation of Garch Models with Heavy-Tailed Likelihoods.” Journal of Business and Economic Statistics 32 (2): 178–191.CrossrefWeb of ScienceGoogle Scholar

  • Francq, C., and J.-M. Zakoian. 2010. GARCH Models: Structure, Statistical Inference and Financial Applications. Chichester: Wiley.Google Scholar

  • Francq, C., and J.-M. Zakoian. 2013. “Optimal Predictions of Powers of Conditionally Heteroscedastic Processes.” Journal of the Royal Statististical Society B 75 (2): 345–367.Web of ScienceCrossrefGoogle Scholar

  • Glosten, L., R. Jagannathan, and D. Runkle. 1993. “On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks.” The Journal of Finance 48 (5): 1779–1801.CrossrefGoogle Scholar

  • Hafner, C., and O. Linton. 2017. “An Almost Closed Form Estimator for the Egarch Model.” Econometric Theory 33 (4): 1013–1038.CrossrefWeb of ScienceGoogle Scholar

  • Harvey, A. C. 2013. Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series. Cambridge: Cambridge University Press.Google Scholar

  • He, C., and T. Teräsvirta. 1999. “Properties of Moments of a Family of Garch Processes.” Journal of Econometrics 92 (1): 173–192.CrossrefGoogle Scholar

  • He, C., A. Silvennoinen, and T. Terasvirta. 2008. “Parameterizing Unconditional Skewness in Models for Financial Time Series.” Journal of Financial Econometrics 6 (2): 208–230.Web of ScienceGoogle Scholar

  • Hentschel, L. 1995. “All in the Family: Nesting Symmetric and Asymmetric Garch Models.” Journal of Financial Economics 39 (1): 71–104.CrossrefGoogle Scholar

  • Hibbert, A., R. Daigler, and B. Dupoyet. 2008. “A Behavioral Explanation for the Negative Asymmetric Return-Volatility Relation.” Journal of Banking and Finance 32 (10): 2254–2266.CrossrefGoogle Scholar

  • Hill, J. 2015. “Robust Estimation and Inference for Heavy Tailed Garch.” Bernoulli 21 (3): 1629–1669.CrossrefWeb of ScienceGoogle Scholar

  • Huang, D., H. Wang, and Q. Yao. 2008. “Estimating Garch Models: When to use what?” Econometrics Journal 11 (1): 27–38.Web of ScienceCrossrefGoogle Scholar

  • Hwang, S., and I. Basawa. 2004. “Stationarity and Moment Structure for Box-Cox Transformed Threshold Garch(1,1) Processes.” Statistics and Probability Letters 68 (3): 209–220.CrossrefGoogle Scholar

  • Jensen, M., and J. Maheu. 2014. “Estimating a Semiparametric Stochastic Volatility Model with a Dirichlet Process Mixture.” Journal of Econometrics 178 (3): 523–538.CrossrefWeb of ScienceGoogle Scholar

  • Kristoufek, L. 2014. “Leverage Effect in Energy Futures.” Energy Economics 45: 1–9.CrossrefWeb of ScienceGoogle Scholar

  • Laurent, S., C. Lecourt, and F. Palm. 2016. “Testing for Jumps in Conditionally Gaussian Arma-Garch Models, a Robust Approach.” Computational Statistics and Data Analysis 100: 383–400.CrossrefWeb of ScienceGoogle Scholar

  • Mendes, B. 2000. “Assessing the Bias of Maximum Likelihood Estimates of Contaminated Garch Models.” Journal of Statistical Computation and Simulation 67 (4): 359–376.CrossrefGoogle Scholar

  • Muler, N., and V. Yohai. 2008. “Robust Estimates for Garch Models.” Journal of Statistical Planning and Inference 138 (10): 2918–2940.CrossrefWeb of ScienceGoogle Scholar

  • Nelson, D. 1991. “Conditional Heteroskedasticity in Asset Returns: A New Approach.” Econometrica 59 (2): 347–370.CrossrefGoogle Scholar

  • Newey, W. K., and D. Steigerwald. 1997. “Asymptotic bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity.” Econometrica 65 (3): 587–599.CrossrefGoogle Scholar

  • Pan, J., H. Wang, and H. Tong. 2008. “Estimation and Tests for Power-Transformed and Threshold Garch Models.” Journal of Econometrics 142 (1): 352–378.CrossrefWeb of ScienceGoogle Scholar

  • Peng, L., and Q. Yao. 2003. “Least Absolute Deviations Estimation for Arch and Garch Models.” Biometrika 90 (4): 967–975.CrossrefGoogle Scholar

  • Rodríguez, M., and E. Ruiz. 2012. “Revisiting Several Popular Garch Models with Leverage Effect: Differences and Similarities.” Journal of Financial Econometrics 10 (4): 637–668.Web of ScienceCrossrefGoogle Scholar

  • Sakata, S., and H. White. 1998. “High Breakdown Point Conditional Dispersion Estimation with Application to s&p 500 daily Returns Volatility.” Econometrica 66 (3): 529–567.CrossrefGoogle Scholar

  • Schwert, G. 1989. “Why does Stock Market Volatility Change Over Time?” Journal of Finance 44 (5): 1115–1153.CrossrefGoogle Scholar

  • Sentana, E. 1995. “Quadratic Arch Models.” Review of Economic Studies 62: 639–661.CrossrefGoogle Scholar

  • Straumann, D., and T. Mikosch. 2006. “Quasi-Maximum-Likelihood Estimation in Heteroskedastic Time Series: A Stochastic Recurrence Equations Approach.” The Annals of Statistics 34 (5): 2449–2495.CrossrefGoogle Scholar

  • Taylor, S. J. 1986. Modelling Financial Time Series. Chichester: Wiley.Google Scholar

  • Teräsvirta, T., and Z. Zhao. 2011. “Stylized Facts of Return Series, Robust Estimates and Three Popular Models of Volatility.” Applied Financial Economics 21 (1–2): 67–94.CrossrefGoogle Scholar

  • Wintenberger, O. 2013. “Continuous Invertibility and Stable QML Estimation of the Egarch(1,1) Model.” Scandinavian Journal of Statistics 40 (4): 846–867.CrossrefWeb of ScienceGoogle Scholar

  • Yu, J. 2012. “A Semiparametric Stochastic Volatility Model.” Journal of Econometrics 167 (2): 473–482.Web of ScienceCrossrefGoogle Scholar

  • Zakoian, J. 1994. “Threshold Heteroskedastic Models.” Journal of Economic Dynamics and Control 18 (5): 931–955.CrossrefGoogle Scholar

  • Zhu, K., and S. Ling. 2015. “Lade-Based Inference for Arma Models with Unspecified and Heavy-Tailed Heteroscedastic Noises.” Journal of the American Statistical Association 110 (510): 784–794.CrossrefWeb of ScienceGoogle Scholar

  • Zivot, E. 2009. “Practical Issues in the Analysis of Univariate GARCH Models.” In Handbook of Financial Time Series, edited by T. Mikosch, J.-P. Kreiß, R. A. Davis and T. G. Andersen. New York: Springer-Verlag.Google Scholar

About the article

Published Online: 2019-12-19

Funding Source: Generalitat Valenciana

Award identifier / Grant number: AICO/2019/295

Funding Source: Consejería de Educación, Junta de Castilla y León,

Award identifier / Grant number: VA148G18

Funding Source: Spanish Government

Award identifier / Grant number: ECO2017-87069-P and ECO2016-77900-P

Generalitat Valenciana, Funder Id: http://dx.doi.org/10.13039/501100003359, Grant Number: AICO/2019/295. Consejería de Educación, Junta de Castilla y León, Funder Id: http://dx.doi.org/10.13039/501100008431, Grant Number: VA148G18. Spanish Government, Grant Number: ECO2017-87069-P and ECO2016-77900-P

Citation Information: Studies in Nonlinear Dynamics & Econometrics, 20180073, ISSN (Online) 1558-3708, DOI: https://doi.org/10.1515/snde-2018-0073.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in