Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studies in Nonlinear Dynamics & Econometrics

Ed. by Mizrach, Bruce

IMPACT FACTOR 2018: 0.448
5-years IMPACT FACTOR: 0.877

CiteScore 2018: 0.85

SCImago Journal Rank (SJR) 2018: 0.552
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Mathematical Citation Quotient (MCQ) 2018: 0.07

See all formats and pricing
More options …
Ahead of print


Volume 24 (2020)

Disentangling the source of non-stationarity in a panel of seasonal data

Shih-Hsun HsuORCID iD: https://orcid.org/0000-0002-8564-4846
Published Online: 2019-12-16 | DOI: https://doi.org/10.1515/snde-2018-0075


In dealing with a panel of seasonal data with cross-section dependence, this paper establishes a common factor model to investigate whether the seasonal and non-seasonal non-stationarity in a series is pervasive, or specific, or both. Without knowing a priori whether the data are seasonal stationary or not, we propose a procedure for consistently estimating the model; thus, the seasonal non-stationarity of common factors and idiosyncratic errors can be separately detected accordingly. We evaluate the methodology in a series of Monte Carlo simulations and apply it to test for non-stationarity and to disentangle their sources in panels of worldwide real exchange rates and of consumer price indexes for 37 advanced economies.

This article offers supplementary material which is provided at the end of the article.

Keywords: common factor; consumer price index; pooled test; purchasing power parity; seasonal non-stationarity; seasonal panels; seasonal unit roots


  • Bai, J., and S. Ng. 2002. “Determining the Number of Factors in Approximate Factor Model.” Econometrica 70: 191–221.CrossrefGoogle Scholar

  • Bai, J., and S. Ng. 2004. “A Panic Attack on Unit Root and Cointegration.” Econometrica 72: 1127–1177.CrossrefGoogle Scholar

  • Bai, J., and S. Ng. 2008. “Large Dimensional Factor Analysis.” Foundations and Trends® in Econometrics 3: 89–163.CrossrefGoogle Scholar

  • Breitung, J., and S. Das. 2005. “Panel Unit Root Tests Under Cross Sectional Dependence.” Statistica Neerlandica 55: 414–433.Google Scholar

  • Breitung, J., and M. H. Pesaran. 2008. “Unit Roots and Cointegration in Panels.” In The Econometrics of Panel Data: Fundamentals and Recent Developments in Theory and Practice, edited by L. Matyas and P. Sevestre, 279–322. Berlin: Springer. Doi: .CrossrefGoogle Scholar

  • Chamberlian, G., and M. Rothschild. 1983. “Arbitrage, Factor Structure and Mean-variance Analysis in Large Asset Markets.” Econometrica 51: 1305–1324.Google Scholar

  • Chang, Y. 2004. “Bootstrap Unit Root Tests in Panels with Cross-Sectional Dependence.” Journal of Econometrics 120: 263–293.CrossrefGoogle Scholar

  • Choi, I. 2001. “Unit Root Tests for Panel Data.” Journal of International Money and Finance 20: 249–272.CrossrefGoogle Scholar

  • Dickey, D. A., and W. A. Fuller. 1979. “Distribution of the Estimators for Autoregressive Time Series with a Unit Root.” Journal of the American Statistical Association 74: 427–431.Google Scholar

  • Dickey, D. A., and W. A. Fuller. 1981. “Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root.” Econometrica 49: 1057–1072.CrossrefGoogle Scholar

  • Dickey, D. A., D. P. Hasza, and W. A. Fuller. 1984. “Testing for Unit Roots in Seasonal Time Series.” Journal of the American Statistical Association 79: 355–367.CrossrefGoogle Scholar

  • Dreger, C., and H. E. Reimers. 2005. “Panel Seasonal Unit Root Test: Further Simulation Results and An Application to Unemployment Data.” AStA Advances in Statistical Analysis 89: 321–337.Google Scholar

  • Fisher, R. A. 1932. Statistical Methods for Research Workers. 4th ed. Edinburgh:Oliver & Boyd.Google Scholar

  • Ghysels, E., and D. R. Osborn. 2001. The Econometric Analysis of Seasonal Time Series. Cambridge:Cambridge University Press. Doi: .CrossrefGoogle Scholar

  • Harris, D. 1997. “Principal Components Analysis of Cointegrated Time Series.” Econometric Theory 13: 529–557.CrossrefGoogle Scholar

  • Hlouskova, J., and M. Wagner. 2006. “The Performance of Panel Unit Root and Stationarity Tests: Results from a Large Scale Simulation Study.” Econometric Reviews 25: 85–116.CrossrefGoogle Scholar

  • Ho, T.-W. 2008. “Testing Seasonal Mean-reversion in the Real Exchange Rates: an Application of Nonlinear IV Estimator.” Economics Letters 99: 314–316.CrossrefWeb of ScienceGoogle Scholar

  • Hylleberg, S., R. F. Engle, C. W. J. Granger, and B. S. Yoo. 1990. “Seasonal Integration and Cointegration.” Journal of Econometrics 44: 215–238.CrossrefGoogle Scholar

  • Im, K., M. H. Pesaran, and Y. Shin. 2003. “Testing for Unit Roots in Heterogeneous Panels.” Journal of Econometrics 115: 53–74.CrossrefGoogle Scholar

  • Johansen, S. 1995. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford: Oxford University Press. Doi: .CrossrefGoogle Scholar

  • Kunst, R. M. 2009. “A Nonparametric Test for Seasonal Unit Roots.” Economics Series, 233, Institute for Advanced Studies. Doi: .CrossrefGoogle Scholar

  • Kunst, R. M., and P. H. Franses. 2011. “Testing for Seasonal Unit Roots in Monthly Panels of Time Series.” Oxford Bulletin of Economics and Statistics 73: 469–488.CrossrefWeb of ScienceGoogle Scholar

  • Lee, Y., and D. Shin. 2006. “Unit Root Tests for Cross-Sectionally Dependent Seasonal Panels.” Economics Letters 93: 311–317.CrossrefGoogle Scholar

  • Levin, A., and C. F. Lin. 1993. Unit Root Tests in Panel Data: Asymptotic and Finite-sample Properties. Unpublished manuscript. Doi: .CrossrefGoogle Scholar

  • Levin, A., C. Lin, and C. J. Chu. 2002. “Unit Root Tests in Panel Data: Asymptotic and Finite-sample Properties.” Journal of Econometrics 108: 1–24.CrossrefGoogle Scholar

  • Maddala, G. S., and S. Wu. 1999. “A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test.” Oxford Bulletin of Economics and Statistics 61: 631–652.CrossrefGoogle Scholar

  • Moon, R., and B. Perron. 2004. “Testing for Unit Root in Panels with Dynamic Factors.” Journal of Econometrics 122: 81–126.CrossrefGoogle Scholar

  • O’Connell, P. 1998. “The Overvaluation of Purchasing Power Parity.” Journal of International Economics 44: 1–19.CrossrefGoogle Scholar

  • Osborn, D. R., A. P. L. Chui, J. P. Smith, and C. R. Birchenhall. 1988. “Seasonality and the Order of Integration for Consumption.” Oxford Bulletin of Economics and Statistics 50: 361–377.Google Scholar

  • Otero, J., J. Smith, and M. Giulietti. 2005. “Testing for Seasonal Unit Roots in Heterogeneous Panels.” Economics Letters 86: 229–235.CrossrefGoogle Scholar

  • Otero, J., J. Smith, and M. Giulietti. 2007. “Testing for Seasonal Unit Roots in Heterogeneous Panels in the Presence of Cross Section Dependence.” Economics Letters 97: 179–184.CrossrefGoogle Scholar

  • Otero, J., J. Smith, and M. Giulietti. 2008. Testing for Seasonal Unit Roots in Heterogeneous Panels Using Monthly Data in the Presence of Cross Sectional Dependence. Unpublished manuscript.Google Scholar

  • Papell, D. 1997. “Searching for Stationarity: Purchasing Power Parity Under the Current Float.” Journal of International Economics 43: 313–323.CrossrefGoogle Scholar

  • Pesaran, M. H. 2007. “A Simple Panel Unit Root Test in the Presence of Cross-Section Dependence.” Journal of Applied Econometrics 22: 265–312.CrossrefGoogle Scholar

  • Phillips, P. C. B., and P. Perron. 1988. “Testing for Unit Root in Time Series Regression.” Biometrica 75: 335–346.CrossrefGoogle Scholar

  • Shin, D., and M. Oh. 2009. “Tests for Seasonal Unit Roots in Panels of Cross-Sectionally Correlated Time Series.” Statistics 43: 139–152.CrossrefWeb of ScienceGoogle Scholar

  • Stock, J. H., and M. W. Watson. 1988. “Testing for Common Trends.” Journal of the American Statistical Association 83: 1097–1107.CrossrefGoogle Scholar

  • Stock, J. H., and M. W. Watson. 2002a. “Forecasting Using Principal Components from a Large Number of Predictors.” Journal of the American Statistical Association 97: 1167–1179.CrossrefGoogle Scholar

  • Stock, J. H., and M. W. Watson. 2002b. “Macroeconomic Forecasting Using Diffusion Indexes.” Journal of Business and Economic Statistics 20: 147–162.CrossrefGoogle Scholar

  • Ucar, N., and H. Guler. 2010. “Testing Stochastic Convergence Hypothesis in Seasonal Heterogeneous Panels.” Economic Modelling 27: 422–431.CrossrefGoogle Scholar

  • Wells, J. 1997. “Business Cycles, Seasonal Cycles, and Common Trends.” Journal of Macroeconomics 19: 443–469.CrossrefGoogle Scholar

  • Wu, J.-L., and S.-W. Wu. 2001. “Is Purchasing Power Parity Overvalued?” Journal of Money, Credit, and Banking 33: 804–812.CrossrefGoogle Scholar

About the article

Published Online: 2019-12-16

Citation Information: Studies in Nonlinear Dynamics & Econometrics, 20180075, ISSN (Online) 1558-3708, DOI: https://doi.org/10.1515/snde-2018-0075.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in