Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studies in Nonlinear Dynamics & Econometrics

Ed. by Mizrach, Bruce


IMPACT FACTOR 2018: 0.448
5-years IMPACT FACTOR: 0.877

CiteScore 2018: 0.85

SCImago Journal Rank (SJR) 2018: 0.552
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Mathematical Citation Quotient (MCQ) 2018: 0.07

Online
ISSN
1558-3708
See all formats and pricing
More options …
Ahead of print

Issues

Volume 24 (2020)

Dependence Modelling in Insurance via Copulas with Skewed Generalised Hyperbolic Marginals

Vitali Alexeev
  • Finance Discipline Group, UTS Business School, University of Technology Sydney, Sydney, NSW 2007, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katja Ignatieva
  • Corresponding author
  • School of Risk and Actuarial Studies, Business School, UNSW Australia, Sydney, NSW 2052, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thusitha Liyanage
  • Portfolio and Market Risk Management Department, Commonwealth Bank of Australia, Sydney, NSW 2000, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-12-20 | DOI: https://doi.org/10.1515/snde-2018-0094

Abstract

This paper investigates dependence among insurance claims arising from different lines of business (LoBs). Using bivariate and multivariate portfolios of losses from different LoBs, we analyse the ability of various copulas in conjunction with skewed generalised hyperbolic (GH) marginals to capture the dependence structure between individual insurance risks forming an aggregate risk of the loss portfolio. The general form skewed GH distribution is shown to provide the best fit to univariate loss data. When modelling dependency between LoBs using one-parameter and mixture copula models, we favour models that are capable of generating upper tail dependence, that is, when several LoBs have a strong tendency to exhibit extreme losses simultaneously. We compare the selected models in their ability to quantify risks of multivariate portfolios. By performing an extensive investigation of the in- and out-of-sample Value-at-Risk (VaR) forecasts by analysing VaR exceptions (i.e. observations of realised portfolio value that are greater than the estimated VaR), we demonstrate that the selected models allow to reliably quantify portfolio risk. Our results provide valuable insights with regards to the nature of dependence and fulfils one of the primary objectives of the general insurance providers aiming at assessing total risk of an aggregate portfolio of losses when LoBs are correlated.

Keywords: copula; dependence modelling; insurance losses; skewed generalised hyperbolic distribution

JEL Classification: G22; C46; C15

References

  • Abramowitz, M., and I. A. Stegun. 1972. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications.Google Scholar

  • Akaike, H. 1974. “A New Look at the Statistical Model Identification.” IEEE Transactions on Automatic Control 19 (6): 716–723.CrossrefGoogle Scholar

  • Albrecher, H., J. Beirlant, and J. L. Teugels. 2017. Reinsurance: Actuarial and Statistical Aspects, Series: Statistics in Practice, 1st ed. Hoboken, NJ: John Wiley & Sons.Google Scholar

  • Alemany, R., C. Bolancé, and M. Guillén. 2013. “A Nonparametric Approach to Calculating Value-at-Risk.” Insurance: Mathematics and Economics 52: 255–262.Google Scholar

  • Alm, J. 2016. “Signs of Dependence and Heavy Tails in Non-Life Insurance Data.” Scandinavian Actuarial Journal 10: 859–875.Google Scholar

  • Barndorff-Nielsen, O., and R. Stelzer. 1997. “Exponentially Decreasing Distributions for the Logarithm of Particle Size.” Proceedings of the Royal Society London A 353: 410–419.Google Scholar

  • Barndorff-Nielsen, O., and R. Stelzer. 2005. “Absolute Moments of Generalized Hyperbolic Distributions and Approximate Scaling of Normal Inverse Gaussian Levy-Processes.” Scandinavian Journal of Statistics 32 (4): 617–637.CrossrefGoogle Scholar

  • Bernardi, M., A. Maruotti, and A. Petrella. 2012. “Skew Mixture Models for Loss Distributions: A Bayesian Approach.” Insurance: Mathematics and Economics 51: 617–623.Google Scholar

  • Blanco, C., and G. Ihle. 1999. “How Good is your VaR? Using Backtesting to Assess System Performance.” Financial Engineering News 11: 1–2.Google Scholar

  • Bolancé, C., M. Guillén, E. Pelican, and R. Vernic. 2008. “Skewed Bivariate Models and Nonparametric Estimation for CTE Risk Measure.” Insurance: Mathematics and Economics 43: 386–393.Google Scholar

  • Bolancé, C., Z. Bahraoui, and M. Artís. 2014. “Quantifying the Risk using Copulae with Nonparametric Marginals.” Insurance: Mathematics and Economics 58: 46–56.Google Scholar

  • Bolancé, C., R. Alemany, and A. E. Padilla-Barreto. 2018. “Impact of D-Vine Structure on Risk Estimation.” Journal of Risk 20: 1–32.Google Scholar

  • Breymann, W., A. Dias, and P. Embrechts. 2003. “Dependence Structures for Multivariate High-Frequency Data in Finance.” Quantitative Finance 3: 1–14.CrossrefGoogle Scholar

  • Chavez-Demoulin, V., and P. Embrechts. 2010. Copulas in Insurance. New Jersey, USA: John Wiley & Sons.Google Scholar

  • Cherubini, U., E. Luciano, and W. Vecchiato. 2004. Copula Methods in Finance. Southern Gate, Chichester, West Sussex, England: Wiley Finance Series.Google Scholar

  • Christoffersen, P. 1998. “Evaluating Interval Forecasts.” International Economic Review 39: 841–862.CrossrefGoogle Scholar

  • Cossette, H., P. Gaillardetz, E. Marceau, and J. Rioux. 2002. “On Two Dependence Individual Risk Models.” Insurance: Mathematics and Economics 30: 153–166.Google Scholar

  • D’Agostino, R., and M. Stephens. 1986. Goodness-of-Fit Techniques, Statistics: A Series of Textbooks and Monographs, volume 68, 1st ed. Marcel Dekker.Google Scholar

  • De Jong, P. 2012. “Modeling Dependence Between Loss Triangles.” North American Actuarial Journal 16: 74–86.CrossrefGoogle Scholar

  • Denuit, M., C. Genest, and E. Marceau. 1999. “Stochastic Bounds on Sums of Dependent Risks.” Insurance: Mathematics and Economics 25: 85–104.Google Scholar

  • Denuit, M., J. Dhaene, and C. Ribas. 2001. “Does Positive Dependence Between Individual Risks Increase Stop-Loss Premiums?” Insurance: Mathematics and Economics 28: 305–308.Google Scholar

  • Dias, A. 2004. Copula Inference for Finance and Insurance. Doctoral Thesis. Unpublished doctoral dissertation, Swiss Federal Institute of Technology (ETH), Switzerland.Google Scholar

  • Dias, A., and P. Embrechts. 2010. “Modelling Exchange Rate Dependence at Different Time Horizons.” Journal of International Money and Finance 8: 1687–1705.Google Scholar

  • Diers, D., M. Eling, and S. D. Marek. 2012. “Dependence Modelling in Non-Life Insurance Using the Bernstein Copula.” Insurance: Mathematics and Economics 50: 430–436.Google Scholar

  • Dowd, K., and D. Blake. 2006. “After VaR: The Theory, Estimation, and Insurance Applications of Quantile-Based Risk Measures.” Journal of Risk and Insurance 73: 193–229.CrossrefGoogle Scholar

  • Eberlein, E., and U. Keller. 1995. “Hyperbolic Distributions in Finance.” Bernoulli 1: 131–140.Google Scholar

  • EIOPA. 2014. “The Underlying Assumptions in the Standard Formula for the Solvency Capital Requirement Calculation.” The European Insurance and Occupational Pensions Authority. https://eiopa.europa.eu/Publications/Standards/EIOPA-14-322_Underlying_Assumptions.pdf.

  • Eling, M. 2012. “Fitting Insurance Claims to Skewed Distributions: Are the Skew-Normal and Skew-Student Good Models?” Insurance: Mathematics and Economics 51: 239–248.Google Scholar

  • Embrechts, P. 2009. “Copulas: A Personal View.” Journal of Risk and Insurance 76 (3): 639–650.CrossrefGoogle Scholar

  • Embrechts, P., A. McNeil, and D. Straumann. 2001. “Correlation and Dependency in Risk Management: Properties and Pitfalls.” In Risk Management: Value at Risk and Beyond, edited by M. Dempster and H. Moffatt. Cambridge: University Press.Google Scholar

  • Embrechts, P., A. McNeil, and D. Straumann. 2002. “Correlation and Dependency in Risk Management: Properties and Pitfalls.” In Risk Management: Value at Risk and Beyond, edited by U. Press. Cambridge: M. Dempster and H. Moffatt.Google Scholar

  • Fang, H., K. Fang, and S. Kotz. 2002. “The Meta-Elliptical Distributions with Given Marginals.” Journal of Multivariate Analysis 82 (1): 1–16.CrossrefGoogle Scholar

  • Frahm, G., M. Junker, and A. Szimayer. 2003. “Elliptical Copulas: Applicability and Limitations.” Statistics and Probability Letters 63: 275–286.CrossrefGoogle Scholar

  • Genest, C., M. Gendron, and M. Bourdeau-Brien. 2009. “The Advent of Copulas in Finance.” The European Journal of Finance 15 (7–8): 609–618.CrossrefGoogle Scholar

  • Hu, L. 2006. “Dependence Patterns Across Financial Markets: A Mixed Copula Approach.” Applied Financial Economics 16: 717–729.CrossrefGoogle Scholar

  • Hult, H., and F. Lindskog. 2002. “Multivariate Extremes, Aggregation and Dependence in Elliptical Distributions.” Advances in Applied Probability 34 (3): 587–608.CrossrefGoogle Scholar

  • Ignatieva, K., and Z. Landsman. 2015. “Estimating the Tails of Loss Severity via Conditional Risk Measures for the Family of Symmetric Generalised Hyperbolic Distributions.” Insurance: Mathematics and Economics 65: 172–186.Google Scholar

  • Ignatieva, K., and Z. Landsman. 2019. “Conditional tail risk measures for the skewed generalised hyperbolic family." Insurance: Mathematics and Economics 86: 98–114.Google Scholar

  • Joe, H. 1993. “Parametric Families of Multivariate Distributions with Given Margins.” Journal of Multivariate Analysis 46 (2): 262–282.CrossrefGoogle Scholar

  • Joe, H. 1997. Multivariate Models and Dependence Concepts. London: Chapman & Hall.Google Scholar

  • Jorion, P. 2007. Value-at-Risk. The New Benchmark for Managing Financial Risk. New York, USA: The McGraw-Hill Companies.Google Scholar

  • Kaas, R., J. Dhaene, and M. Goovaerts. 2000. “Upper and Lower Bounds for Sums of Random Variables.” Insurance: Mathematics and Economics 27: 151–168.Google Scholar

  • Lane, M. 2000. “Pricing Risk Transfer Transactions.” ASTIN Bulletin, The Journal of the International Actuarial Association 30 (2): 259–293.Google Scholar

  • Lee, S. C. K., and S. X. Lin. 2012. “Modeling Dependent Risks with Multivariate Erlang Mixtures.” ASTIN Bulletin, The Journal of the International Actuarial Association 42: 153–180.Google Scholar

  • Lindskog, F., A. McNeil, and U. Schmock. 2003. “Kendall’s Tau for Elliptical Distributions.” in Credit Risk: Contributions to Economics, 149–156. Springer, Berlin, Germany: Springer-Verlag.Google Scholar

  • Lopez, J. 1998. “Regulatory Evaluation of Value-at-Risk Models.” Economic Policy Review 4 (3): 119–124.Google Scholar

  • Madan, D., and E. Seneta. 1990. “The Variance Gamma Model for Share Market Returns.” Journal of Business 63: 511–524.CrossrefGoogle Scholar

  • McLeish, D. L., and C. G. Small. 1988. The Theory and Applications of Statistical Inference Functions. Lecture Notes in Statistics, volume 44. New York: Springer-Verlag.Google Scholar

  • McNeil, A. 1997. “Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory.” ASTIN Bulletin, The Journal of the International Actuarial Association 27 (1): 117–137.Google Scholar

  • McNeil, A., R. Frey, and P. Embrechts. 2004. Quantitative Risk Management: Concept, Techniques and Tools. Princeton, USA: Princeton University Press.Google Scholar

  • McNeil, A., R. Frey, and P. Embrechts. 2015. Quantitative Risk Management: Concepts, Techniques and Tools, Rrevised Edition. Princeton University Press.Google Scholar

  • Merz, M., M. Wüthrich, and E. Hashorva. 2013. “Dependence Modelling in Multivariate Claims Run-Off Triangles.” Annals of Actuarial Science 7: 3–25.CrossrefGoogle Scholar

  • Miljkovic, T. and B. Grün. 2016. “Modeling Loss Data using Mixtures of Distributions.” Insurance: Mathematics and Economics 70: 387–396.Google Scholar

  • Nelsen, R. 2006. An Introduction to Copulas, 2nd ed. Portland, OR, USA: Springer.Google Scholar

  • Praetz, P. D. 1972. “The Distribution of Share Price Changes.” Journal of Business 45: 49–55.CrossrefGoogle Scholar

  • Salzmann, R., and M. V. Wüthrich. 2012. “Modelling Accounting Year Dependence in Runoff Triangles.” European Actuarial Journal 2: 227–242.CrossrefGoogle Scholar

  • Stephens, M. 1974. “EDF Statistics for Goodness of Fit and Some Comparisons.” Journal of the American Statistical Association 69: 730–737.CrossrefGoogle Scholar

  • Vernic, R. 2006. “Multivariate Skew-Normal Distributions with Applications in Insurance.” Insurance: Mathematics and Economics 38: 413–426.Google Scholar

  • Wu, F., A. Valdez, and M. Sherris. 2007. “Simulating from Exchangeable Archimedean Copulas.” Communications in Statistics – Simulation and Computation 36: 1019–1034.CrossrefGoogle Scholar

About the article

aThe opinions expressed in this article are the author’s own and do not reflect the view of the Commonwealth Bank of Australia.


Published Online: 2019-12-20


Citation Information: Studies in Nonlinear Dynamics & Econometrics, 20180094, ISSN (Online) 1558-3708, DOI: https://doi.org/10.1515/snde-2018-0094.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in