[1] R. Bacher, Determinants of matrices related to the Pascal triangle, *J. Théor. Nombres Bordeaux*, 14(1)(2002), 19-41.Google Scholar

[2] P. F. Byrd, Problem B-12: A Lucas determinant, *Fibonacci Quart.*, 1(4)(1963), 78.Google Scholar

[3] N. D. Cahill, J. R. D’Errico, D. A. Narayan and J. Y. Narayan, Fibonacci determinants, *College Math. J.*, 33(3)(2002), 221-225.CrossrefGoogle Scholar

[4] N. D. Cahill, J. R. D’Errico and J. P. Spence, Complex factorizations of the Fibonacci and Lucas numbers, *Fibonacci Quart.*, 41(1)(2003), 13-19.Google Scholar

[5] N. D. Cahill and D. A. Narayan, Fibonacci and Lucas numbers as tridiagonal matrix determinants, *Fibonacci Quart.*, 42(3)(2004), 216-221.Google Scholar

[6] G. S. Cheon, S. G. Hwang, S. H. Rim and S. Z. Song, Matrices determined by a linear recurrence relation among entries, Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002), Linear Algebra Appl. 373 (2003), 89-99.Google Scholar

[7] K. Griffin, J. L. Stuart and M. J. Tsatsomeros, Noncirculant Toeplitz matrices all of whose powers are Toeplitz, *Czechoslovak**Math. J.*, 58(133)(4)(2008), 1185-1193.Google Scholar

[8] A. R. Moghaddamfar, K. Moghaddamfar and H. Tajbakhsh, New families of integer matrices whose leading principal minors form some well-known sequences, *Electron. J. Linear Algebra*, 22(2011), 598-619.Google Scholar

[9] A. R. Moghaddamfar and S. M. H. Pooya, Generalized Pascal triangles and Toeplitz matrices, *Electron. J. Linear Algebra*, 18(2009), 564-588.Google Scholar

[10] A. R. Moghaddamfar, S. M. H. Pooya, S. Navid Salehy and S. Nima Salehy, Fibonacci and Lucas sequences as the principal minors of some infinite matrices, *J. Algebra Appl.*, 8(6)(2009), 869-883.Web of ScienceCrossrefGoogle Scholar

[11] A. R. Moghaddamfar, S. Rahbariyan, S. Navid Salehy and S. Nima Salehy, Some infinite matrices whose leading principal minors are well-known sequences, *Util. Math.*, (to appear)Google Scholar

[12] A. R. Moghaddamfar and H. Tajbakhsh, Lucas numbers and determinants, *Integers*, 12(1)(2012), 21-51.Google Scholar

[13] A. R. Moghaddamfar and H. Tajbakhsh, More determinant representations for sequences, *J. Integer Seq.*, 17(5)(2014), Article 14.5.6, 16 pp.Google Scholar

[14] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org, 2013.Google Scholar

[15] G. Strang, *Introduction to Linear Algebra*, Third Edition. Wellesley-Cambridge Press, 1993.Google Scholar

[16] G. Strang and K. Borre, *Linear Algebra, Geodesy, and GPS*, Wellesley-Cambridge Press, 1997.Google Scholar

[17] M. Tan, Matrices associated to biindexed linear recurrence relations, *Ars Combin.*, 86 (2008), 305-319.Google Scholar

[18] S. Vajda, *Fibonacci and Lucas numbers, and the golden section: Theory and applications*, With chapter XII by B. W. Conolly. Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1989. 190 pp.Google Scholar

[19] Y. Yang and M. Leonard, Evaluating determinants of convolution-like matrices via generating functions, *Int. J. Inf. Syst. Sci.*, 3(4)(2007), 569-580.Google Scholar

[20] H. Zakrajšek and M. Petkovšek, Pascal-like determinants are recursive, *Adv. in App Math.*, 33(3)(2004), 431-450. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.