Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Special Matrices

Editor-in-Chief: da Fonseca, Carlos Martins

Covered by:

CiteScore 2017: 0.29

SCImago Journal Rank (SJR) 2017: 0.295
Source Normalized Impact per Paper (SNIP) 2017: 0.481

Mathematical Citation Quotient (MCQ) 2017: 0.17

Open Access
See all formats and pricing
More options …

Determinant Representations of Sequences: A Survey

A. R. Moghaddamfar
  • Corresponding author
  • Department of Mathematics, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. Navid Salehy / S. Nima Salehy
Published Online: 2014-05-01 | DOI: https://doi.org/10.2478/spma-2014-0005


This is a survey of recent results concerning (integer) matrices whose leading principal minors are well-known sequences such as Fibonacci, Lucas, Jacobsthal and Pell (sub)sequences. There are different ways for constructing such matrices. Some of these matrices are constructed by homogeneous or nonhomogeneous recurrence relations, and others are constructed by convolution of two sequences. In this article, we will illustrate the idea of these methods by constructing some integer matrices of this type.

Keywords : determinant; generalized Pascal triangle; (Quasi) Toeplitz matrix; (Quasi) Pascal-like matrix; Fibonacci (Lucas; Jacobsthal and Pell) sequence


  • [1] R. Bacher, Determinants of matrices related to the Pascal triangle, J. Théor. Nombres Bordeaux, 14(1)(2002), 19-41.Google Scholar

  • [2] P. F. Byrd, Problem B-12: A Lucas determinant, Fibonacci Quart., 1(4)(1963), 78.Google Scholar

  • [3] N. D. Cahill, J. R. D’Errico, D. A. Narayan and J. Y. Narayan, Fibonacci determinants, College Math. J., 33(3)(2002), 221-225.CrossrefGoogle Scholar

  • [4] N. D. Cahill, J. R. D’Errico and J. P. Spence, Complex factorizations of the Fibonacci and Lucas numbers, Fibonacci Quart., 41(1)(2003), 13-19.Google Scholar

  • [5] N. D. Cahill and D. A. Narayan, Fibonacci and Lucas numbers as tridiagonal matrix determinants, Fibonacci Quart., 42(3)(2004), 216-221.Google Scholar

  • [6] G. S. Cheon, S. G. Hwang, S. H. Rim and S. Z. Song, Matrices determined by a linear recurrence relation among entries, Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002), Linear Algebra Appl. 373 (2003), 89-99.Google Scholar

  • [7] K. Griffin, J. L. Stuart and M. J. Tsatsomeros, Noncirculant Toeplitz matrices all of whose powers are Toeplitz, CzechoslovakMath. J., 58(133)(4)(2008), 1185-1193.Google Scholar

  • [8] A. R. Moghaddamfar, K. Moghaddamfar and H. Tajbakhsh, New families of integer matrices whose leading principal minors form some well-known sequences, Electron. J. Linear Algebra, 22(2011), 598-619.Google Scholar

  • [9] A. R. Moghaddamfar and S. M. H. Pooya, Generalized Pascal triangles and Toeplitz matrices, Electron. J. Linear Algebra, 18(2009), 564-588.Google Scholar

  • [10] A. R. Moghaddamfar, S. M. H. Pooya, S. Navid Salehy and S. Nima Salehy, Fibonacci and Lucas sequences as the principal minors of some infinite matrices, J. Algebra Appl., 8(6)(2009), 869-883.Web of ScienceCrossrefGoogle Scholar

  • [11] A. R. Moghaddamfar, S. Rahbariyan, S. Navid Salehy and S. Nima Salehy, Some infinite matrices whose leading principal minors are well-known sequences, Util. Math., (to appear)Google Scholar

  • [12] A. R. Moghaddamfar and H. Tajbakhsh, Lucas numbers and determinants, Integers, 12(1)(2012), 21-51.Google Scholar

  • [13] A. R. Moghaddamfar and H. Tajbakhsh, More determinant representations for sequences, J. Integer Seq., 17(5)(2014), Article 14.5.6, 16 pp.Google Scholar

  • [14] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org, 2013.Google Scholar

  • [15] G. Strang, Introduction to Linear Algebra, Third Edition. Wellesley-Cambridge Press, 1993.Google Scholar

  • [16] G. Strang and K. Borre, Linear Algebra, Geodesy, and GPS, Wellesley-Cambridge Press, 1997.Google Scholar

  • [17] M. Tan, Matrices associated to biindexed linear recurrence relations, Ars Combin., 86 (2008), 305-319.Google Scholar

  • [18] S. Vajda, Fibonacci and Lucas numbers, and the golden section: Theory and applications, With chapter XII by B. W. Conolly. Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1989. 190 pp.Google Scholar

  • [19] Y. Yang and M. Leonard, Evaluating determinants of convolution-like matrices via generating functions, Int. J. Inf. Syst. Sci., 3(4)(2007), 569-580.Google Scholar

  • [20] H. Zakrajšek and M. Petkovšek, Pascal-like determinants are recursive, Adv. in App Math., 33(3)(2004), 431-450. Google Scholar

About the article

Received: 2013-10-29

Accepted: 2014-04-03

Published Online: 2014-05-01

Published in Print: 2014-01-01

Citation Information: Special Matrices, Volume 2, Issue 1, ISSN (Online) 2300-7451, DOI: https://doi.org/10.2478/spma-2014-0005.

Export Citation

© 2014 by Moghaddamfar A. R. et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in