[1] L. D. Abreu, J. Bustoz, J. L. Cardoso: The roots of the third Jackson q-Bessel function, Internat. J. Math. Math. Sci. 67 (2003)
4241-4248.
Google Scholar

[2] A. Alonso, B. Simon: The Birman-Krein-Vishik theory of self-adjoint extensions of semibounded operators, J. Operator Theory
4 (1980) 251-270.
Google Scholar

[3] N. I. Akhiezer: The Classical Moment Problem and Some Related Questions in Analysis, (Oliver & Boyd, Edinburgh, 1965).
Google Scholar

[4] M. H. Annaby, Z. S. Mansour: On the zeros of the second and third Jackson q-Bessel functions and their associated q-Hankel
transforms, Math. Proc. Camb. Phil. Soc. 147 (2009) 47-67.
Web of ScienceGoogle Scholar

[5] B. M. Brown, J. S. Christiansen: On the Krein and Friedrichs extensions of a positive Jacobi operator, Expo. Math. 23 (2005)
179-186.
Google Scholar

[6] G. Gasper, M. Rahman: Basic Hypergeometric Series, (Cambridge University Press, Cambridge, 1990).
Google Scholar

[7] T. S. Chihara: An Introduction to Orthogonal Polynomials, (Gordon and Breach, Science Publishers, Inc., New York, 1978).
Google Scholar

[8] T. Kato: Perturbation Theory for Linear Operators, (Springer-Verlag, Berlin, 1980).
Google Scholar

[9] H. T. Koelink: Some basic Lommel polynomials, J. Approx. Theory 96 (1999) 345-365.
Google Scholar

[10] H. T. Koelink,W. Van Assche: Orthogonal polynomials and Laurent polynomials related to the Hahn-Exton q-Bessel function,
Constr. Approx. 11 (1995) 477-512.
Google Scholar

[11] H. T. Koelink, R. F. Swarttouw: On the zeros of the Hahn-Exton q-Bessel function and associated q-Lommel polynomials,
J. Math. Anal. Appl. 186 (1994) 690-710.
Google Scholar

[12] L. O. Silva, R. Weder: On the two-spectra inverse problemfor semi-infinite Jacobi matrices in the limit-circle case,Math. Phys.
Anal. Geom. 11 (2008) 131-154.
Web of ScienceGoogle Scholar

[13] B. Simon: The classical moment problem as a self-adjoint finite difference operator, Adv. Math. 137 (1998) 82-203.
Google Scholar

[14] F. Štampach, P. Šťovíček: The characteristic function for Jacobi matrices with applications, Linear Algebra Appl. 438 (2013)
4130-4155.
Web of ScienceGoogle Scholar

[15] F. Štampach, P. Šťovíček: Special functions and spectrum of Jacobi matrices, Linear Algebra Appl., in press, available online:
http://dx.doi.org/10.1016/j.laa.2013.06.024.
CrossrefGoogle Scholar

[16] G. Teschl: Jacobi Operators and Completely Integrable Nonlinear Lattices, (AMS, Rhode Island, 2000).
Google Scholar

[17] W. Van Assche: The ratio of q-like orthogonal polynomials, J. Math. Anal. Appl. 128 (1987) 535-547.
Google Scholar

[18] J. Weidmann. Linear Operators in Hilbert Spaces. (Springer-Verlag, New York, 1980).Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.