Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Special Matrices

Editor-in-Chief: da Fonseca, Carlos Martins

1 Issue per year

Mathematical Citation Quotient (MCQ) 2016: 0.13

Emerging Science

Open Access
See all formats and pricing
More options …

Symmetric Hadamard matrices of order 116 and 172 exist

Olivia Di Matteo / Dragomir Ž. Ðoković
  • University of Waterloo, Department of Pure Mathematics, Institute for Quantum Computing, Waterloo, Ontario, N2L 3G1, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ilias S. Kotsireas
  • Wilfrid Laurier University, Department of Physics & Computer Science, Waterloo, Ontario, N2L 3C5, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-08 | DOI: https://doi.org/10.1515/spma-2015-0022


We construct new symmetric Hadamard matrices of orders 92, 116, and 172. While the existence of those of order 92 was known since 1978, the orders 116 and 172 are new. Our construction is based on a recent new combinatorial array (GP array) discovered by N. A. Balonin and J. Seberry. For order 116 we used an adaptation of an algorithm for parallel collision search. The adaptation pertains to the modification of some aspects of the algorithm to make it suitable to solve a 3-way matching problem. We also point out that a new infinite series of symmetric Hadamard matrices arises by plugging into the GP array the matrices constructed by Xia, Xia, Seberry, and Wu in 2005.


  • Google Scholar

  • [1] N. A. Balonin, Jennifer Seberry, Visualizing Hadamard matrices: the propus construction, preprint 15pp (submitted 6 Aug 2014). Google Scholar

  • [2] N. A. Balonin, Jennifer Seberry, A review and new symmetric conferencematrices, Informatsionno-upravliaiushchie sistemy, 2014, 8470; 4 (71), 2–7. Google Scholar

  • [3] R. Craigen and H. Kharaghani, HadamardMatrices and Hadamard Designs. In Handbook of Combinatorial Designs. Edited by Charles J. Colbourn and Jeffrey H. Dinitz. Second edition. DiscreteMathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2007. Google Scholar

  • [4] D. Ž. Ðoković and I. S. Kotsireas, New results on D-optimal matrices. J. Combin. Designs, 20 (2012), 278–289. Google Scholar

  • [5] D. Ž. Ðoković and I. S. Kotsireas, Compression of periodic complementary sequences and applications, Des. Codes Cryptogr. 74 (2015), 365–377. Google Scholar

  • [6] Y. J. Ionin and M. S. Shrikhande, Combinatorics of Symmetric Designs. New Mathematical Monographs, 5. Cambridge University Press, Cambridge, 2006. Google Scholar

  • [7] R. Mathon, Symmetric conference matrices of order pq2 + 1. Canad. J. Math., 30 (1978), 321–331. Google Scholar

  • [8] J. Seberry Wallis, Hadamard Matrices, in W. D. Wallis, A. Penfold Street, Jennifer Seberry Wallis, Combinatorics: Room squares, sum-free sets, Hadamard matrices. Lecture Notes in Mathematics, Vol. 292. Springer-Verlag, Berlin-New York, 1972. Google Scholar

  • [9] R. J. Turyn, An infinite class of Williamson matrices, J. Combinatorial Theory Ser. A 12 (1972), 319–321. Google Scholar

  • [10] Paul C. van Oorschot and Michael J. Wiener, Parallel collision search with cryptanalytic applications, Journal of Cryptology, January 1999, Volume 12, Issue 1, 1–28. Google Scholar

  • [11] M. Xia, T. Xia, J. Seberry and J. Wu, An infinite series of Goethals–Seidel arrays, Discrete Applied Mathematics 145 (2005) , 498–504. Google Scholar

  • [12] O. Di Matteo, Parallelizing quantum circuit synthesis. MSc thesis, University of Waterloo (2015). Google Scholar

About the article

Received: 2015-07-25

Accepted: 2015-09-18

Published Online: 2015-10-08

Citation Information: Special Matrices, Volume 3, Issue 1, ISSN (Online) 2300-7451, DOI: https://doi.org/10.1515/spma-2015-0022.

Export Citation

©2015 Olivia Di Matteo et al.,. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in