Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Special Matrices

Editor-in-Chief: da Fonseca, Carlos Martins

1 Issue per year


Covered by:
WoS (ESCI)
SCOPUS
MathSciNet
zbMATH

CiteScore 2017: 0.29

SCImago Journal Rank (SJR) 2017: 0.295
Source Normalized Impact per Paper (SNIP) 2017: 0.481

Mathematical Citation Quotient (MCQ) 2017: 0.17

Open Access
Online
ISSN
2300-7451
See all formats and pricing
More options …

A class of cyclic (v; k1, k2, k3; λ) difference families with v ≡ 3 (mod 4) a prime

Dragomir Ž. Ðokovic / Ilias S. Kotsireas
  • Wilfrid Laurier University, Department of Physics & Computer Science, Waterloo, Ontario, N2L 3C5, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-07 | DOI: https://doi.org/10.1515/spma-2016-0029

Abstract

We construct several new cyclic (v; k1, k2, k3; λ) difference families, with v ≡ 3 (mod 4) a prime and λ = k1 + k2 + k3 − (3v − 1)/4. Such families can be used in conjunction with the well-known Paley-Todd difference sets to construct skew-Hadamard matrices of order 4v. Our main result is that we have constructed for the first time the examples of skew Hadamard matrices of orders 4 · 239 = 956 and 4 · 331 = 1324.

References

  • [1] L. D. Baumert, Cyclic difference sets. Lecture Notes in Mathematics, Vol. 182 Springer-Verlag, Berlin-New York 1971. Google Scholar

  • [2] D. Ž. Ðokovic, Some new D-optimal designs. Australas. J Combin. 15 (1997), 221–231. Google Scholar

  • [3] D. Ž. Ðokovic, Skew-Hadamard matrices of orders 188 and 388 exist. International Mathematical Forum, 22 (2008), 1063– 1068 Google Scholar

  • [4] D. Ž. Ðokovic, Skew-Hadamard matrices of orders 436, 580, and 988 exist, J. Combin. Designs, 16 (2008), 493–498. Google Scholar

  • [5] D. Ž. Ðokovic, Supplementary difference sets with symmetry for Hadamard matrices. Operators and Matrices, 3 (2009), 557–569. Google Scholar

  • [6] D. Ž. Ðokovic, O. Golubitsky and I. S. Kotsireas, Some new orders of Hadamard and skew-Hadamard matrices. J. Combin. Designs, 22 (2014), 270–277. Google Scholar

  • [7] D. Ž. Ðokovic and I. S. Kotsireas, New results on D-optimal matrices. J. Combin. Designs, 20 (2012), 278–289. Google Scholar

  • [8] D. Ž. Ðokovic and I. S. Kotsireas, D-optimal matrices of orders 118, 138, 150, 154 and 174. In: C. J. Colbourn (ed.) Algebraic Design Theory and Hadamard Matrices, pp. 71–82, ADTHM, Lethbridge, Alberta, Canada, July 2014. Springer Proceedings in Mathematics & Statistics, vol. 133. Springer 2015. Google Scholar

  • [9] W. Duke, Some old problems and new results about quadratic forms, Not. Amer. Math. Soc. 44 (1997), 190–196. Google Scholar

  • [10] R. J. Fletcher, C. Koukouvinos and J. Seberry, New skew-Hadamard matrices of order 4.59 and new D-optimal designs of order 2.59, Discrete Math. 286 (2004), 251–253. Google Scholar

  • [11] D. Jungnickel, A. Pott, K. W. Smith, Difference sets, in Handbook of combinatorial designs. Edited by C. J. Colbourn and J. H. Dinitz. Second edition. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2007. Google Scholar

  • [12] C. Koukouvinos, S. Stylianou, On skew-Hadamard matrices, Discrete Math. 308 (2008), 2723–2731. Google Scholar

  • [13] J. Seberry, M. Yamada, Hadamardmatrices, sequences, and block designs. In Contemporary design theory, 431–560,Wiley- Intersci. Ser. Discrete Math. Optim., Wiley, New York, 1992, Google Scholar

  • [14] D. R. Stinson, Combinatorial designs. Constructions and analysis. Springer-Verlag, New York, 2004. Google Scholar

  • [15] J. H. van Lint, R. M. Wilson, A course in combinatorics. Cambridge University Press, Cambridge, 1992. Google Scholar

About the article

Received: 2016-03-18

Accepted: 2016-07-15

Published Online: 2016-10-07


Citation Information: Special Matrices, Volume 4, Issue 1, ISSN (Online) 2300-7451, DOI: https://doi.org/10.1515/spma-2016-0029.

Export Citation

©2016 Dragomir Ž. Ðokovic* and Ilias S. Kotsireas. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in