[1] L. D. Baumert, Cyclic difference sets. Lecture Notes in Mathematics, Vol. 182 Springer-Verlag, Berlin-New York 1971.
Google Scholar

[2] D. Ž. Ðokovic, Some new D-optimal designs. Australas. J Combin. 15 (1997), 221–231.
Google Scholar

[3] D. Ž. Ðokovic, Skew-Hadamard matrices of orders 188 and 388 exist. International Mathematical Forum, 22 (2008), 1063–
1068
Google Scholar

[4] D. Ž. Ðokovic, Skew-Hadamard matrices of orders 436, 580, and 988 exist, J. Combin. Designs, 16 (2008), 493–498.
Google Scholar

[5] D. Ž. Ðokovic, Supplementary difference sets with symmetry for Hadamard matrices. Operators and Matrices, 3 (2009),
557–569.
Google Scholar

[6] D. Ž. Ðokovic, O. Golubitsky and I. S. Kotsireas, Some new orders of Hadamard and skew-Hadamard matrices. J. Combin.
Designs, 22 (2014), 270–277.
Google Scholar

[7] D. Ž. Ðokovic and I. S. Kotsireas, New results on D-optimal matrices. J. Combin. Designs, 20 (2012), 278–289.
Google Scholar

[8] D. Ž. Ðokovic and I. S. Kotsireas, D-optimal matrices of orders 118, 138, 150, 154 and 174. In: C. J. Colbourn (ed.) Algebraic
Design Theory and Hadamard Matrices, pp. 71–82, ADTHM, Lethbridge, Alberta, Canada, July 2014. Springer Proceedings
in Mathematics & Statistics, vol. 133. Springer 2015.
Google Scholar

[9] W. Duke, Some old problems and new results about quadratic forms, Not. Amer. Math. Soc. 44 (1997), 190–196.
Google Scholar

[10] R. J. Fletcher, C. Koukouvinos and J. Seberry, New skew-Hadamard matrices of order 4.59 and new D-optimal designs of
order 2.59, Discrete Math. 286 (2004), 251–253.
Google Scholar

[11] D. Jungnickel, A. Pott, K. W. Smith, Difference sets, in Handbook of combinatorial designs. Edited by C. J. Colbourn and J.
H. Dinitz. Second edition. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL,
2007.
Google Scholar

[12] C. Koukouvinos, S. Stylianou, On skew-Hadamard matrices, Discrete Math. 308 (2008), 2723–2731.
Google Scholar

[13] J. Seberry, M. Yamada, Hadamardmatrices, sequences, and block designs. In Contemporary design theory, 431–560,Wiley-
Intersci. Ser. Discrete Math. Optim., Wiley, New York, 1992,
Google Scholar

[14] D. R. Stinson, Combinatorial designs. Constructions and analysis. Springer-Verlag, New York, 2004.
Google Scholar

[15] J. H. van Lint, R. M. Wilson, A course in combinatorics. Cambridge University Press, Cambridge, 1992.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.