Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Special Matrices

Editor-in-Chief: da Fonseca, Carlos Martins

Covered by:

CiteScore 2018: 0.64

SCImago Journal Rank (SJR) 2018: 0.408
Source Normalized Impact per Paper (SNIP) 2018: 1.005

Mathematical Citation Quotient (MCQ) 2018: 0.29

Open Access
See all formats and pricing
More options …

Polynomial sequences generated by infinite Hessenberg matrices

Luis Verde-Star
  • Department of Mathematics, Universidad Autónoma Metropolitana, Iztapalapa, Apartado 55-534, México D. F. 09340, Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-20 | DOI: https://doi.org/10.1515/spma-2017-0002


We show that an infinite lower Hessenberg matrix generates polynomial sequences that correspond to the rows of infinite lower triangular invertible matrices. Orthogonal polynomial sequences are obtained when the Hessenberg matrix is tridiagonal. We study properties of the polynomial sequences and their corresponding matrices which are related to recurrence relations, companion matrices, matrix similarity, construction algorithms, and generating functions. When the Hessenberg matrix is also Toeplitz the polynomial sequences turn out to be of interpolatory type and we obtain additional results. For example, we show that every nonderogative finite square matrix is similar to a unique Toeplitz-Hessenberg matrix.

Keywords: Polynomial sequences of interpolatory type; infinite Toeplitz matrices; infinite Hessenberg matrices; Toeplitz companion matrices


  • [1] A. Böttcher, S. M. Grudsky, Toeplitz Matrices, Asymptotic Linear Algebra and Functional Analysis, Birkhäuser, Basel, 2000.Google Scholar

  • [2] A. Böttcher, B. Silbermann, Introduction to Large Truncated Toeplitz Matrices, Springer, New York, 1999.Google Scholar

  • [3] D. S. Mackey, N. Mackey, S. Petrovic, Is every matrix similar to a Toeplitz matrix?, Linear Algebra Appl. 297 (1999) 87-105.Google Scholar

  • [4] M. Merca, A note on the determinant of a Toeplitz-Hessenberg matrix, Spec. Matrices, 2013; 1:10-16.Google Scholar

  • [5] L. Verde-Star, Infinite triangular matrices, q-Pascal matrices, and determinantal representations, Linear Algebra Appl. 434 (2011) 307-318.Google Scholar

  • [6] L. Verde-Star, Characterization and construction of classical orthogonal polynomials using a matrix approach, Linear Algebra Appl. 438 (2013) 3635-3648.Google Scholar

  • [7] L. Verde-Star, Polynomial sequences of interpolatory type, Studies Appl. Math. 88 (1993) 153-172.Google Scholar

  • [8] L. Verde-Star, Elementary triangular matrices and inverses of k-Hessenberg matrices and triangular matrices, Spec. Matrices, 2015; 3: 250-256.Google Scholar

About the article

Received: 2016-08-29

Accepted: 2016-09-26

Published Online: 2017-01-20

Published in Print: 2017-01-26

Citation Information: Special Matrices, Volume 5, Issue 1, Pages 64–72, ISSN (Online) 2300-7451, DOI: https://doi.org/10.1515/spma-2017-0002.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Francesco Aldo Costabile, Maria Italia Gualtieri, and Anna Napoli
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, Volume 113, Number 4, Page 3829
Francesco A. Costabile, Maria Italia Gualtieri, and Anna Napoli
Integral Transforms and Special Functions, 2018, Page 1

Comments (0)

Please log in or register to comment.
Log in