[1] H. C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. Journal of Computational Physics, 72:2384-2393, February 1980.Google Scholar

[2] G. Bussi, D. Donadio, and M. Parrinello. Canonical sampling through velocity rescaling. J. Chem. Phys., 126:014101, 2007.Web of ScienceGoogle Scholar

[3] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 81(8):3684-3690, 1984.Google Scholar

[4] G. E. Cho and C. D. Meyer. Comparison of perturbation bounds for the stationary distribution of a Markov chain. Linear Algebra and its Applications, 335(1):137-150, 2001.Google Scholar

[5] J. D. Chodera, N. Singhal, V. S. Pande, K. A. Dill, andW. C. Swope. Automatic discovery of metastable states for the construction of markov models of macromolecular conformational dynamics. J. Chem. Phys., 126(15):155101, 2007.Google Scholar

[6] P. Deuflhard, W. Huisinga, A. Fischer, and Ch. Schuette. Identification of almost invariant aggregates in reversible nearly uncoupled markov chains. Lin. Alg. Appl., 315(1-3):39-59, 2000.Google Scholar

[7] S. Duane, A.D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid monte carlo. Phys. Let. B, 195(2):216-222, 1987.Google Scholar

[8] P. Deuflhard and M. Weber. Robust perron cluster analysis in conformation dynamics. Linear Algebra and its Applications, 398(0):161 - 184, 2005. Special Issue on Matrices and Mathematical Biology.Google Scholar

[9] A. Frieze, R. Kannan, and S. Vempala. Fast monte-carlo algorithms for finding low-rank approximations. J. ACM, 51(6):1025-1041, 2004.Google Scholar

[10] S. Friedland, V. Mehrmann, A. Miedlar, and M. Nkengla. Fast low rank approximations of matrices and tensors. Elec. J. Lin. Alg., 22:1031-1048, 2011.Google Scholar

[11] S. Friedland, A. Niknejad, M. Kaveh, and H. Zare. Fast monte-carlo algorithms for finding low-rank approximations for matrice. In Proc. IEEE Conference SoSE, pages 218-223, 2006.Google Scholar

[12] H. C. Lie, K. Fackeldey, and M. Weber. A square root approximation of transition rates for a markov state model. SIAM. J. Matrix Anal. Appl., 34(2):738-756, 2013.Google Scholar

[13] V.S. Pande, K. Beauchamp, and G.R.Bowman. Everything you wanted to know about markov state models but were afraid to ask. Methods, 52(1):99-105, 2010.Web of ScienceGoogle Scholar

[14] C. Schütte. Conformational Dynamics: Modelling, Theory, Algorithm and Application to Biomolecules. Habilitation thesis, Freie Universität Berlin, 1999.Google Scholar

[15] C. Schütte andW. Huisinga. On conformational dynamics induced by a langevin processes. Equadiff ’99, 2:1247-1262, 2000.Google Scholar

[16] C. R. Schwantes, R. T. McGibbon, and V. S. Pande. Perspective: Markov models for long-timescale biomolecular dynamics. J. Chem. Phys., 141(9):090901, 2014Web of ScienceGoogle Scholar

[17] C. Schütte, F. Noe, J. Lu, M. Sarich, and E. Vanden-Eijnden. Markov state models based on milestoning. J. Chem. Phys., 134(20):204105, 2011.Web of ScienceGoogle Scholar

[18] C. Schütte and M. Sarich. Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches, volume 24 of Courant Lecture Notes. American Mathematical Society, 2013.Google Scholar

[19] E. Vanden-Eijnden and F. A. Tal. Transition state theory: Variational formulation, dynamical corrections, and error estimates. J. Chem. Phys., 123(18):184103, 2005.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.