Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Special Matrices

Editor-in-Chief: da Fonseca, Carlos Martins

1 Issue per year


Covered by:
WoS (ESCI)
SCOPUS
MathSciNet
zbMATH

CiteScore 2017: 0.29

SCImago Journal Rank (SJR) 2017: 0.295
Source Normalized Impact per Paper (SNIP) 2017: 0.481

Mathematical Citation Quotient (MCQ) 2017: 0.17


Emerging Science

Open Access
Online
ISSN
2300-7451
See all formats and pricing
More options …

Finding metastabilities in reversible Markov chains based on incomplete sampling

Konstantin Fackeldey
  • Corresponding author
  • TU Berlin, Str. d 17 Juni 135, 10623 Berlin & Zuse Institute Berlin (ZIB), Takustr 7, 14195 Berlin, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Amir Niknejad / Marcus Weber
Published Online: 2017-04-19 | DOI: https://doi.org/10.1515/spma-2017-0006

Abstract

In order to fully characterize the state-transition behaviour of finite Markov chains one needs to provide the corresponding transition matrix P. In many applications such as molecular simulation and drug design, the entries of the transition matrix P are estimated by generating realizations of the Markov chain and determining the one-step conditional probability Pij for a transition from one state i to state j. This sampling can be computational very demanding. Therefore, it is a good idea to reduce the sampling effort. The main purpose of this paper is to design a sampling strategy, which provides a partial sampling of only a subset of the rows of such a matrix P. Our proposed approach fits very well to stochastic processes stemming from simulation of molecular systems or random walks on graphs and it is different from the matrix completion approaches which try to approximate the transition matrix by using a low-rank-assumption. It will be shown how Markov chains can be analyzed on the basis of a partial sampling. More precisely. First, we will estimate the stationary distribution from a partially given matrix P. Second, we will estimate the infinitesimal generator Q of P on the basis of this stationary distribution. Third, from the generator we will compute the leading invariant subspace, which should be identical to the leading invariant subspace of P. Forth, we will apply Robust Perron Cluster Analysis (PCCA+) in order to identify metastabilities using this subspace.

Keywords: Markov State Models; sampling strategy; transition matrix; molecular simulation

References

  • [1] H. C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. Journal of Computational Physics, 72:2384-2393, February 1980.Google Scholar

  • [2] G. Bussi, D. Donadio, and M. Parrinello. Canonical sampling through velocity rescaling. J. Chem. Phys., 126:014101, 2007.Web of ScienceGoogle Scholar

  • [3] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 81(8):3684-3690, 1984.Google Scholar

  • [4] G. E. Cho and C. D. Meyer. Comparison of perturbation bounds for the stationary distribution of a Markov chain. Linear Algebra and its Applications, 335(1):137-150, 2001.Google Scholar

  • [5] J. D. Chodera, N. Singhal, V. S. Pande, K. A. Dill, andW. C. Swope. Automatic discovery of metastable states for the construction of markov models of macromolecular conformational dynamics. J. Chem. Phys., 126(15):155101, 2007.Google Scholar

  • [6] P. Deuflhard, W. Huisinga, A. Fischer, and Ch. Schuette. Identification of almost invariant aggregates in reversible nearly uncoupled markov chains. Lin. Alg. Appl., 315(1-3):39-59, 2000.Google Scholar

  • [7] S. Duane, A.D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid monte carlo. Phys. Let. B, 195(2):216-222, 1987.Google Scholar

  • [8] P. Deuflhard and M. Weber. Robust perron cluster analysis in conformation dynamics. Linear Algebra and its Applications, 398(0):161 - 184, 2005. Special Issue on Matrices and Mathematical Biology.Google Scholar

  • [9] A. Frieze, R. Kannan, and S. Vempala. Fast monte-carlo algorithms for finding low-rank approximations. J. ACM, 51(6):1025-1041, 2004.Google Scholar

  • [10] S. Friedland, V. Mehrmann, A. Miedlar, and M. Nkengla. Fast low rank approximations of matrices and tensors. Elec. J. Lin. Alg., 22:1031-1048, 2011.Google Scholar

  • [11] S. Friedland, A. Niknejad, M. Kaveh, and H. Zare. Fast monte-carlo algorithms for finding low-rank approximations for matrice. In Proc. IEEE Conference SoSE, pages 218-223, 2006.Google Scholar

  • [12] H. C. Lie, K. Fackeldey, and M. Weber. A square root approximation of transition rates for a markov state model. SIAM. J. Matrix Anal. Appl., 34(2):738-756, 2013.Google Scholar

  • [13] V.S. Pande, K. Beauchamp, and G.R.Bowman. Everything you wanted to know about markov state models but were afraid to ask. Methods, 52(1):99-105, 2010.Web of ScienceGoogle Scholar

  • [14] C. Schütte. Conformational Dynamics: Modelling, Theory, Algorithm and Application to Biomolecules. Habilitation thesis, Freie Universität Berlin, 1999.Google Scholar

  • [15] C. Schütte andW. Huisinga. On conformational dynamics induced by a langevin processes. Equadiff ’99, 2:1247-1262, 2000.Google Scholar

  • [16] C. R. Schwantes, R. T. McGibbon, and V. S. Pande. Perspective: Markov models for long-timescale biomolecular dynamics. J. Chem. Phys., 141(9):090901, 2014Web of ScienceGoogle Scholar

  • [17] C. Schütte, F. Noe, J. Lu, M. Sarich, and E. Vanden-Eijnden. Markov state models based on milestoning. J. Chem. Phys., 134(20):204105, 2011.Web of ScienceGoogle Scholar

  • [18] C. Schütte and M. Sarich. Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches, volume 24 of Courant Lecture Notes. American Mathematical Society, 2013.Google Scholar

  • [19] E. Vanden-Eijnden and F. A. Tal. Transition state theory: Variational formulation, dynamical corrections, and error estimates. J. Chem. Phys., 123(18):184103, 2005.Google Scholar

About the article

Received: 2016-11-25

Accepted: 2017-03-16

Published Online: 2017-04-19

Published in Print: 2017-01-26


Citation Information: Special Matrices, Volume 5, Issue 1, Pages 73–81, ISSN (Online) 2300-7451, DOI: https://doi.org/10.1515/spma-2017-0006.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in