Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Special Matrices

Editor-in-Chief: da Fonseca, Carlos Martins


Covered by:
WoS (ESCI)
SCOPUS
MathSciNet
zbMATH

CiteScore 2018: 0.64

SCImago Journal Rank (SJR) 2018: 0.408
Source Normalized Impact per Paper (SNIP) 2018: 1.005

Mathematical Citation Quotient (MCQ) 2018: 0.29

Open Access
Online
ISSN
2300-7451
See all formats and pricing
More options …

Some matrix properties preserved by generalized matrix functions

Michele Benzi / Ru Huang
Published Online: 2019-01-08 | DOI: https://doi.org/10.1515/spma-2019-0003

Abstract

Generalized matrix functions were first introduced in [J. B. Hawkins and A. Ben-Israel, Linear and Multilinear Algebra, 1(2), 1973, pp. 163-171]. Recently, it has been recognized that these matrix functions arise in a number of applications, and various numerical methods have been proposed for their computation. The exploitation of structural properties, when present, can lead to more efficient and accurate algorithms. The main goal of this paper is to identify structural properties of matrices which are preserved by generalized matrix functions. In cases where a given property is not preserved in general, we provide conditions on the underlying scalar function under which the property of interest will be preserved by the corresponding generalized matrix function.

Keywords: structured matrices; generalized matrix functions; structure preservation

MSC 2010: 15A16

References

  • [1] F. Andersson, M. Carlsson, and K.-M. Perfekt, Operator-Lipschitz estimates for the singular value functional calculus, Proc. Amer. Math. Soc., 144 (2016), pp. 1867-1875.Web of ScienceGoogle Scholar

  • [2] F. Arrigo and M. Benzi, Edge modiffication criteria for enhancing the communicability of digraphs, SIAM J.Matrix Anal. Appl., 37 (2016), pp. 443-468.Google Scholar

  • [3] F. Arrigo, M. Benzi, and C. Fenu, Computation of generalizedmatrix functions, SIAM J.Matrix Anal. Appl., 37 (2016), pp. 836-860.Google Scholar

  • [4] B. Arslan, V. Noferini, and F. Tisseur, The structured condition number of a differentiable map between matrix manifolds, with applications, MIMS EPrint 2017.36, Manchester Institute for Mathematical Sciences, 2017.Google Scholar

  • [5] J. Aurentz, A. Austin, M. Benzi, and V. Kalantzis, Stable computation of generalized matrix functions via polynomial interpolation, Preprint, 2018.Web of ScienceGoogle Scholar

  • [6] P. J. Davis, Circulant Matrices, Wiley, New York, NY, 1979.Google Scholar

  • [7] N. Del Buono, L. Lopez, and R. Peluso, Computation of the exponential of large sparse skew-symmetric matrices, SIAM J. Sci. Comput., 27 (2005), pp. 278-293.CrossrefGoogle Scholar

  • [8] N. Del Buono, L. Lopez and T. Politi, Computation of functions of Hamiltonian and skew-symmetric matrices, Math. Comp. Simul., 79 (2008), pp. 1284-1297.Google Scholar

  • [9] J. B. Hawkins and A. Ben-Israel, On generalized matrix functions, Linear and Multilinear Algebra, 1 (1973), pp. 163-171.Google Scholar

  • [10] N. J. Higham, Functions ofMatrices. Theory and Computation, Society for Industrial and AppliedMathematics, Philadelphia, PA, 2008.Google Scholar

  • [11] N. J. Higham, D. S. Mackey, N. Mackey, and F. Tisseur, Functions preserving matrix groups and iterations for the matrix square root, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 849-877.CrossrefGoogle Scholar

  • [12] R. D. Hill, R. G. Bates, and S. R. Waters, On perhermitian matrices, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 173-179.CrossrefGoogle Scholar

  • [13] R. A. Horn and C. R. Johnson, Matrix Analysis. Second Edition, Cambridge University Press, 2013.Google Scholar

  • [14] A. Lee, Centrohermitian and skew-centrohermitian matrices, Linear Algebra Appl., 29 (1980), pp. 205-210.CrossrefGoogle Scholar

  • [15] V. Noferini, A formula for the Fréchet derivative of a generalized matrix function, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 434-457.CrossrefGoogle Scholar

About the article

Received: 2018-08-16

Accepted: 2018-11-17

Published Online: 2019-01-08

Published in Print: 2019-12-01


Citation Information: Special Matrices, Volume 7, Issue 1, Pages 27–37, ISSN (Online) 2300-7451, DOI: https://doi.org/10.1515/spma-2019-0003.

Export Citation

© by Michele Benzi, Ru Huang, published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in