[1] F. Andersson, M. Carlsson, and K.-M. Perfekt, Operator-Lipschitz estimates for the singular value functional calculus, Proc. Amer. Math. Soc., 144 (2016), pp. 1867-1875.Web of ScienceGoogle Scholar

[2] F. Arrigo and M. Benzi, Edge modiffication criteria for enhancing the communicability of digraphs, SIAM J.Matrix Anal. Appl., 37 (2016), pp. 443-468.Google Scholar

[3] F. Arrigo, M. Benzi, and C. Fenu, Computation of generalizedmatrix functions, SIAM J.Matrix Anal. Appl., 37 (2016), pp. 836-860.Google Scholar

[4] B. Arslan, V. Noferini, and F. Tisseur, The structured condition number of a differentiable map between matrix manifolds, with applications, MIMS EPrint 2017.36, Manchester Institute for Mathematical Sciences, 2017.Google Scholar

[5] J. Aurentz, A. Austin, M. Benzi, and V. Kalantzis, Stable computation of generalized matrix functions via polynomial interpolation, Preprint, 2018.Web of ScienceGoogle Scholar

[6] P. J. Davis, Circulant Matrices, Wiley, New York, NY, 1979.Google Scholar

[7] N. Del Buono, L. Lopez, and R. Peluso, Computation of the exponential of large sparse skew-symmetric matrices, SIAM J. Sci. Comput., 27 (2005), pp. 278-293.CrossrefGoogle Scholar

[8] N. Del Buono, L. Lopez and T. Politi, Computation of functions of Hamiltonian and skew-symmetric matrices, Math. Comp. Simul., 79 (2008), pp. 1284-1297.Google Scholar

[9] J. B. Hawkins and A. Ben-Israel, On generalized matrix functions, Linear and Multilinear Algebra, 1 (1973), pp. 163-171.Google Scholar

[10] N. J. Higham, Functions ofMatrices. Theory and Computation, Society for Industrial and AppliedMathematics, Philadelphia, PA, 2008.Google Scholar

[11] N. J. Higham, D. S. Mackey, N. Mackey, and F. Tisseur, Functions preserving matrix groups and iterations for the matrix square root, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 849-877.CrossrefGoogle Scholar

[12] R. D. Hill, R. G. Bates, and S. R. Waters, On perhermitian matrices, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 173-179.CrossrefGoogle Scholar

[13] R. A. Horn and C. R. Johnson, Matrix Analysis. Second Edition, Cambridge University Press, 2013.Google Scholar

[14] A. Lee, Centrohermitian and skew-centrohermitian matrices, Linear Algebra Appl., 29 (1980), pp. 205-210.CrossrefGoogle Scholar

[15] V. Noferini, A formula for the Fréchet derivative of a generalized matrix function, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 434-457.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.