Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Studia Quaternaria

The Journal of Institute of Geological Sciences and Committee for Quaternary Research of Polish Academy of Sciences

2 Issues per year


SCImago Journal Rank (SJR): 0.200
Source Normalized Impact per Paper (SNIP): 0.312

Open Access
Online
ISSN
2300-0384
See all formats and pricing
More options …

Non-Pollen Palynomorphs from Mid-Holocene Peat of the Raised Bog Borsteler Moor (Lower Saxony, Germany)

Lyudmila S. Shumilovskikh
  • Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology, IMBE UMR CNRS 7263, Europôle Mediterraneen de l'Arbois, 13545 Aix-en-Provence, France; Laboratory of Biogeochemical and Remote Methods of Environmental Monitoring, National Research Tomsk State University, Russia; Department of Palynology and Climate Dynamics, Georg-August-University of Gottingen, Gottingen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Frank Schlütz / Inke Achterberg / Andreas Bauerochse / Hanns Hubert Leuschner
Published Online: 2015-09-02 | DOI: https://doi.org/10.1515/squa-2015-0001

Abstract

In order to reconstruct regional vegetation changes and local conditions during the fen-bog transition in the Borsteler Moor (northwestern Germany), a sediment core covering the period be tween 7.1 and 4.5 cal kyrs BP was palynologically investigated. The pollen diagram demonstrates the dominance of oak forests and a gradual replacement of trees by raised bog vegetation with the wetter conditions in the Late Atlantic. At ~ 6 cal kyrs BP, the non-pollen palynomorphs (NPP) demonstrate the succession from mesotrophic conditions, clearly indicated by a number of fun gal spore types, to oligotrophic conditions, indicated by Sphagnum spores, Bryophytomyces sphagni, and testate amoebae Amphitrema, Assulina and Arcella, etc. Four relatively dry phases during the transition from fen to bog are clearly indicated by the dominance of Calluna and associated fungi as well as by the in crease of microcharcoal. Several new NPP types are described and known NPP types are identified. All NPP are discussed in the context of their palaeoecological indicator values.

Keywords : pollen; fungal spores; microbiomorphs; palynology; bog development

References

  • Bakker M., van Smeerdijk D.G. 1982. A palaeoecological study of a late Holocene section from “Het Ilperveld”, western Nether­lands. Review of Palaeobotany and Palynology 36, 95-163. Bauch R. 1938. Uber die systematische Stellung von Tilletia Spha- gni Nawashin. Berichte der Deutschen Botanischen Gesell- schaft 56, 73-85.Google Scholar

  • Behre K.-E. 2004. Coastal development, sea-level change and set­tlement history during the later Holocene in the Clay District of Lower Saxony (Niedersachsen), northern Germany. Quater­nary International 112, 37-53.Google Scholar

  • Behre K.-E. 2008. Landschaftsgeschichte Norddeutschlands - Umwelt und Siedlung von der Steinzeit bis zur Gegenwart. Wachholtz Verlag, Neumunster.Google Scholar

  • Beug H.-J. 2004. Leitfaden der Pollenbestimmung. Verlag Dr. Friedrich Pfeil, Munchen Bielańska-Grajner I., Cudak A., Mieczan T. 2011. Epiphytic rotifer abundance and diversity in moss patches in bogs and fens in the Polesie National Park (Eastern Poland). International Review of Hydrobiology 96, 29-38.Google Scholar

  • Blaauw M. 2010. Methods and code for ‘classical’ age-modeling of radiocarbon sequences, Quaternary Geochronology 5, 512­518.CrossrefGoogle Scholar

  • Blaauw M., Mauquoy D. 2012. Signal and variability within a Ho­locene peat bog - Chronological uncertainties of pollen, macrofossil and fungal proxies. Review of Palaeobotany and Palynology 186, 5-15.Google Scholar

  • Borradaile L.A., Eastham L.E.S., Potts F.A., Saunders J.T. 1963. The Invertebrata. Cambridge University Press, Cambridge.Google Scholar

  • Bradley W. H. 1967. Two aquatic fungi (Chytridiales) from the Green River Formation of Wyoming. American Journal of Botany 54, 577-582.CrossrefGoogle Scholar

  • Chau R. 1979. Conidial ultrastructure and taxonomic affinity of a fungal parasite of Sphagnum. The Michigan Botanist 18, 15-18.Google Scholar

  • Braune W., Leman A., Taubert H. 1999. Pflanzenanatomisches Praktikum II. Zur Einfuhrung in den Bau, die Fortpflanzung und Ontogenie der niederen Pflanzen (auch der Bakterien und Pilze). Spektrum Verlag, Heidelberg, Berlin (in German).Google Scholar

  • Davey M.L., Currah R.S. 2006. Interactions between mosses (Bryophyta) and fungi. Canadian Journal of Botany 84, 1509-1519.CrossrefGoogle Scholar

  • Eckstein J., Leuschner H.H., Bauerochse A. 2011. Mid-Holocene pine woodland phases and mire development - significance of dendrochronological data from subfossil trees from nortwest Germany. Journal of Vegetation Science 22, 781-794.Google Scholar

  • Eckblad F.-E. 1975. Tilletia sphagni, Helotium schimperi, or what? Pollen et Spores 17, 423-428.Google Scholar

  • Ellis M.B., Ellis J.P. 1985. Microfungi on land plants. The Rich­mond Publishing, Slough.Google Scholar

  • Frey D.G. 1964. Remains of animals in Quaternary lake and bog sediments and their interpretation. Ergebnisse der Limnologie 2, 1-114.M Goh T.K., Hyde K.D., Tsui K.M. 1998. The hyphomycetes genus Acrogenospora, with two new species and two new combina­tions. Mycological Research 102, 1309-1315.Google Scholar

  • Goh T.-K., Hyde K.D., Ho W.H, Yanna 1999. A revision of the ge­nus Dictyosporium, with descriptions of three new species. Fungal diversity 2, 65-100.Google Scholar

  • Grosse-Brauckmann G. 1997. Moore und Moornaturschutzgebiete in Deutschland - eine Bestandsaufnahme. Telma 27, 183-215.Google Scholar

  • Hesmer H. 1929. Mikrofossilien in Torfen. Palaontologische Zeit- schrift 11, 245-257.Google Scholar

  • Juggins S. 2007. C2. Software for ecological and palaeoecological data analysis and visualisation. User guide Version 1.5. Uni­versity of Newcastle, Newcastle upon Tyne.Google Scholar

  • Kalgutkar R.M., Jansonius J. 2000. Synopsis of fossil fungal spores, mycelia and fructifications. AASP, Dallas.Google Scholar

  • Krug J.C., Benny G.L., Keller H.W. 2004. Coprophilous fungi. In Mueller G.M., Bills G.F., Foster M.S. (eds.), Biodiversity of Fungi: Inventory and Monitoring Methods, 467-499. Elsevier, Amsterdam.Google Scholar

  • Kuhry P. 1985. Transgression of a raised bog across a coversand ridge origtnally covered with an oak-lime forest. Palaeoeco­logical study of a Middle Holocene local vegetation succession in the Amtsven (northwest Germany). Review of Palaeobotany and Palynology 44, 303-353.Google Scholar

  • Kuhry P. 1997. The palaeoecology of a treed bog in western boreal Canada: a study based on microfossils, macrofossils and phy­sic-chemical properties. Review of Palaeobotany and Palyno­logy 96, 183-224.Google Scholar

  • Kürschner H., Shumilovskikh L., Djamali M., de Beaulieu J.-L. 2014. A late Holocene subfossil record of Sphagnum squarro- sum Crome (Sphagnopsida, Bryophyta) from NW Iran. Nowa Hedwigia, 100, 373-381.Google Scholar

  • Lundqvist N. 1972. Nordic Sordariaceae sensu lato. Symbolae Botanicae Upsalienses 20, 1-314.Google Scholar

  • Markovskaja S., Treigien A. 2007. A new and a rare species of Cryptadelphia and their Brachysporium anamorphs. Nova Hedwigia 84, 495-501.CrossrefGoogle Scholar

  • Middeldorp, A.A. 1986. Functional palaeoecology of the Hahne- nmoor raised bog ecosystem - a study of vegetation history, production and decomposition by means of pollen density dat­ing. Review of Palaeobotany and Palynology 49, 1-73.Google Scholar

  • Miola A. 2012. Tools for Non-Pollen Palynomorphs (NPPs) analy­sis: A list of Quaternary NPP types and reference literature in English language (1972-2011). Review of Palaeobotany and Palynology 186, 142-161.Google Scholar

  • Mirza J.H., Cain R.F. 1969. Revision of the genus Podospora. Ca­nadian Journal of Botany 47, 1999-2048.Google Scholar

  • Montoya E., Rull V., van Geel B. 2010. Non-pollen palynomorphs from surface sedtments along an altitudinal transect of the Venezuelan Andes. Palaeogeography, Palaeoclimatology, Pa­laeoecology 297, 169-183.Google Scholar

  • Müller E. 1962. Uber die Ascomycetengattung Stuartella Fabre. Berichte der Schweizerischen Botanischen Gesellschaft = Bul­letin de la Societe Botanique Suisse / Band 72, 118-122.Google Scholar

  • Munk A. 1957. Danish Pyrenomycetes. Dansk Botamisk Arkiv 17, 1-491.Google Scholar

  • Punt W., Hoen P.P., Blackmore S., Nilsson S., le Thomas A. 2007. Glossary of poll en and spore terminology. Review of Pala- eobotany and Palynology 143, 1-81.Google Scholar

  • Réblová M., Seifert K.A. 2004. Cryptadelphia (Trichosphaeriales), a new genus for holomorphs with Brachysporium anamorphs and clarification of the taxonomic status of Wallrothiella. Mycologia 96, 343-367.CrossrefGoogle Scholar

  • Richardson M.J. 2001. Diversity and occurrence of coprophilous fungi. Mycological Research 105, 387-402.CrossrefGoogle Scholar

  • Reimer P.J., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Bronk Ramsey C., Buck C.E., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Haflidason H., Hajdas I., Hatte C., Heaton T.J., Hoffmann D.L., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., Manning S.W., Niu M., Reimer R.W., Rich­ards D.A., Scott E.M., Southon J.R., Turney C.S.M., van der Plicht J., 2013. IntCal13 and Marine13 radiocarbon age cali­bration curves, 0-50,000 years cal BP. Radiocarbon 55, 1869­1887.Google Scholar

  • Rudolph K. 1917. Untersuchungen uber den Aufbau Bohmischer Moore. I. Aufbau und Entwicklungsgeschichte Sudbohmi- scher Moore. Abhandlungen der K.K. zoologisch-botanischer Gesellschaft im Wien 9, 1-116.Google Scholar

  • Seifert K., Morgan-Jones G., Gams W., Kendrick B. 2011. The gen­era of Hyphomycetes. CBS Biodiversity Series 9. CBS- KNAW Fungal Biodiversity Centre, Utrecht.Google Scholar

  • Sherwood-Pike M.A. 1988. Freshwater fungi: fossil record and paleoecological potential. Palaeogeography, Palaeoclimato­logy, Palaeoecology 62, 271-285.CrossrefGoogle Scholar

  • Shumilovskikh L.S., Schlutz F., Achterberg I., Kvitkina A., Baue­rochse A., Leuschner H.H. Pollen as nutrient source in Holo­cene ombrotrophic bogs. Review of Palaeobotany and Paly- nology, in revison.Google Scholar

  • Stchigel A.M., Calduch M., Guarro J., Zaror L. 2002. A new species of Podospora from soil in Chile. Mycologia 94, 554-558.CrossrefGoogle Scholar

  • Sutton B.C. 1985. Notes on some deuteromycete genera with cheiroid or digitate brown conidia. Proceeding of Indian Acad­emy of Science (Plant Science) 94, 229-244.Google Scholar

  • Van Beverwijk A.L. 1954. Three new fungi: Helicoon plurisep- tatum n.sp., Papulaspora pulmonaria n. sp. and Tricellula inaequalis n.gen. n.sp. Antonie van Leeuwenhoek 20, 1-16.Google Scholar

  • Van Geel B. 1978. A palaeo eco logi cal study of Ho lo cene peat bog sec tions in Ger many and the Neth er lands, based on the anal y - sis of pol len, spores and macro- and mi cro scopic re mains of fungi, al gae, cor mo phytes and an i mals. Re view of Palaeobotany and Palynology 25, 1-120.Google Scholar

  • Van Geel B., Bohncke S.J.P., Dee H. 1981. A palaeo eco logi cal study of an up per late gla cial and Ho lo cene se quence from “de Borchert”, the Neth er lands. Re view of Palaeobotany and Palynology 31, 367-448.Google Scholar

  • Van Geel B., Aptroot A. 2006. Fos sil ascomycetes in Qua ter nary de pos its. Nova Hedwigia 82, 313-329.CrossrefGoogle Scholar

  • Van Geel B., Aptroot A., Mauquoy D. 2006. Sub-fos sil ev i dence for fun gal hyperparasitism (Isthmospora spinosa on Meliola ellisii, on Calluna vulgaris) in a Ho lo cene in ter me di ate ombrotrophic bog in north ern-Eng land. Re view of Palaeobotany and Palynology 141, 121-126.Google Scholar

  • Van Geel B., Gelorini V., Lyaruu A., Aptroot A., Rucina S., Marchant R., Damsté J.S.S., Verschuren D. (2011). Di ver sity and ecol ogy of trop i cal Af ri can fun gal spores from a 25,000- year palaeoenvironmental re cord in south east ern Kenya. Re - view of Palaeobotany and Palynology 164, 174-190.Google Scholar

  • Warner B.G., Chengalath R. 1988. Ho lo cene fos sil Habrotrocha angusticollis (Bdelloidea: Rotifera) in North Amer ica. Jour nal of Palaeolimnology 1, 141-147.Google Scholar

  • Watanabe T. 2010. Pic to rial At las of Soil and Seed Fungi. CRC Press, Boca Raton.Google Scholar

  • Willemsen J., van’t Veer R., van Geel B. 1996. Environmental change during the medieval reclamation of the raised-bog area Waterland (The Neth er lands): a palaeophytosociological approach. Re view of Palaeobotany and Palynology 94, 75-100. Google Scholar

About the article

Received: 2014-11-07

Accepted: 2015-06-08

Published Online: 2015-09-02

Published in Print: 2015-06-01


Citation Information: Studia Quaternaria, ISSN (Online) 2300-0384, DOI: https://doi.org/10.1515/squa-2015-0001.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Vladimir Sheinkman, Sergey Sedov, Lyudmila Shumilovskikh, Elena Korkina, Sergey Korkin, Evgeniy Zinovyev, and Alexandra Golyeva
Quaternary International, 2016, Volume 418, Page 132

Comments (0)

Please log in or register to comment.
Log in