Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Soil Science Annual

formerly Roczniki Gleboznawcze

4 Issues per year

Index Copernicus Value- 93.69 pkt

Open Access
Online
ISSN
2300-4975
See all formats and pricing
In This Section

Agrophysics - physics in agriculture and environment

Jan Gliński
  • Institute of Agrophysics, Polish Academy of Sciences, Do.wiadczalna 4, 20-290 Lublin, Poland
/ Józef Horabik
  • Institute of Agrophysics, Polish Academy of Sciences, Do.wiadczalna 4, 20-290 Lublin, Poland
/ Jerzy Lipiec
  • Institute of Agrophysics, Polish Academy of Sciences, Do.wiadczalna 4, 20-290 Lublin, Poland
Published Online: 2013-09-19 | DOI: https://doi.org/10.2478/ssa-2013-0012

Abstract

Agrophysics is one of the branches of natural sciences dealing with the application of physics in agriculture and environment. It plays an important role in the limitation of hazards to agricultural objects (soils, plants, agricultural products and foods) and to the environment. Soil physical degradation, gas production in soils and emission to the atmosphere, physical properties of plant materials influencing their technological and nutritional values and crop losses are examples of such hazards. Agrophysical knowledge can be helpful in evaluating and improving the quality of soils and agricultural products as well as the technological processes.

Streszczenie

Agrofizyka jest integralną częścią fizy ki środowiska, o charakterze interdyscyplinarnym, stojącą na pograniczu fizyki i biologii oraz nauk podstawowych i stosowanych. Odgrywa ważną rolę w ograniczaniu zagrożeó środowiskowych w obiek- tach rolniczych (gleby, rośliny, płody rolne, produkty żywnościowe) w tym; fizycznej degradacji gleb, produkcji i emisji gazów do atmosfery oraz strat ilościowych i jakościowych biomasy. Jest pomocna w ocenie i ulepszaniu gleb, produktów rolniczych oraz procesów technologicznych. Ńowoczcinc metody pomiarowe, monitoring i modelowanie odgrywają ważnąrolę w badaniach agrofiaycznych.

Keywords: agrophysics; soils; agriculture; environment; physical methods

Słówa kluczowe: agrofizyka; metody fizyczne. gleby; rolnictwo; środowisko

  • Ad Litteram DREAM, 2009. A European project coordinated by the BIA research unit. Newsletter of the INRA Centre ofAn- gers-Nantes, July 2009.Google Scholar

  • Aghbashlo M., Kianmehr M.H., Khani S., Ghasemi M., 2009. Mathematical modelling of thin-layer drying of carrot. Int. Agrophysics 23: 1-5.Google Scholar

  • Akinoso R., Raji A.O., 20ll. Physical properties of fruit, nut and kernel of oil palm Int. Agrophysics 25(l): 85-88.Google Scholar

  • Aladjadjiyan A., 2010. Influence of stationary magnetic field on lentil seeds. Int. Agrophysics 24(3): 321-324.Google Scholar

  • Altuntas E., Cangi R., Kaya C., 2011. Physical and chemical pro­perties of persimmon fruit. Int. Agrophysics 25(1): 89-92.Google Scholar

  • Amiri Chayjan R., Amiri Parian J., Esna-Ashari M., Peyman M.H., 2010.Mathematical modelling of corn thermodynamic pro­perties for desorption energy estimation. Int. Agrophysics 24(3): 213-218.Google Scholar

  • Anderson S.S., 2011. Clay-pan and its environmental effects. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London. New York: 122-125.Google Scholar

  • Ashtiani Araghi H., Sadeghi M., Hemmat A., 2010. Physical pro­perties of two rough rice varieties affected by moisture con­tent. Int. Agrophysics 24(2): 205-207.Google Scholar

  • Askari Asli-Ardeh E., Abbaspour-Gilandeh Y., Shojaei S., 2010. Determination of dynamic friction coefficient of paddy gra­ins on different surfaces. Int. Agrophysics 24(2): 101-105.Google Scholar

  • Assouline S., 2011a. Bulk density of soils and impact on their physical properties. [In:] Encyclopedia of agrophysics (Gliń­ski J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, He­idelberg, London. New York: 95-100.Google Scholar

  • Assouline S., 2011b. Soil surface sealing and crusting. [In:] En­cyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London. New York: 788-794.Google Scholar

  • Atkinson B.S., Sparkes D. L., Mooney S. J., 2009. Effect of se­edbed cultivation and soil macrostructure on the establish­ment of winter wheat (Triticum aestivum) Soil Till. Res. 103: 291-301.Google Scholar

  • Aviara N.A., Igbeka J.C., Nwokocha, L.M., 2010. Effect of dry­ing temperature on physicochemical properties of cassava starch. Int. Agrophysics 24(3): 219-225.Google Scholar

  • Bagherpour H., Minaei S., Khoshtaghaza M.H., 2010. Selected physico-mechanical properties of lentil seed. Int. Agrophy­sics 24(1): 81-84.Google Scholar

  • Baiyeri K.P., Ugese F.D., 2011. Tropical fruits and vegetables: physical properties. [In:] Encyclopedia of agrophysics. (Gliń­ski J., Horabik J., Lipiec. J., Eds.). Springer Dordrecht, He­idelberg, London. New York: 927-936.Google Scholar

  • Bambgboye A.I., Adejumo O.I., 2010. Thermal properties of ro­selle seeds. Int. Agrophysics 24(1): 85-87.Google Scholar

  • Bengough A.G., Bransby M.F., Hans J., McKenna S.J., Roberts T.J., Valentine T.A., 2006. Root responses to soil physical conditions; growth dynamics from field to cell. J. Exp. Bot. 57: 437-447.Google Scholar

  • Bengough A.G., McKenzie B.M., Hallett P.D., Valentine T.A.,2011.Root elongation, water stress, and mechanical impe­dance: a review of limiting stresses and beneficial root tip traits. J. Exp. Bot. 62: 59-68.CrossrefGoogle Scholar

  • Bialousz S., 2011. Soil physical degradation, assessment with the use of remote sensing. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 761-770.Google Scholar

  • Bieganowski A., Sławiński C., Ryżak M., Cieśla J., Krusińska A., 2010. Application of optical technologies for measure­ment of physical properties of soils. [In:] Physical, chemical and biological processes in soils. (Szajdak L.W., Karabanov A.K, Eds.). The Committee on Land Reclamation and Agri­cultural Environment Engineering, Polish Academy of Scien­ces, Poznań: 21-31.Google Scholar

  • Birkás M., 2008. Environmentally-sound adaptable tillage. Aka­demia Kiado, Budapest, Hungary: 351 pp.Google Scholar

  • Birkás M., 2011. Tillage, impact on soil and environment. degra­dation, assessment with the use of remote sensing. [In:] En­cyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 905-908.Google Scholar

  • Blahovec J., 2011a. Plant bending. [In:] Encyclopedia of agro­physics (Gliński J., Horabik J., Lipiec. J., Eds.). Springer Do­rdrecht, Heidelberg, London, New York: 60-62.Google Scholar

  • Blahovec J., 2011b. Water in forming agricultural products. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 975-977.Google Scholar

  • Blum Winfried E.H., 2011. Physical degradation of soils, risk and threats. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 564-565.Google Scholar

  • Busscher W.J., 2011. Hardpan soils: management. [In:] Encyclo­pedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 359-362.Google Scholar

  • Caurie M., 2011. Hysteresis in foods. [In:] Encyclopedia of agro­physics (Gliński J., Horabik J., Lipiec J., Eds.). Springer, Dordrecht, Heidelberg, London, New York: 380.Google Scholar

  • Chesworth W. (Ed.), 2008. Encyclopedia of soil science. Sprin­ger-Verlag: 902 pp.Google Scholar

  • Clark L.J.G., Gowing D.J., Lark R.M., Leeds-Harrison P.B., Miller A.J., Wells D.M., Whalley W.R., Whitmore A.P., 2005. Sen­sing the physical and nutritional status of the root environ­ment in the field: a review of progress and opportunities. Jo­urnal of Agricultural Science 143: 347-358.Google Scholar

  • Czyż E. A., 2004. Effects of traffic on soil aeration, bulk density and growth of spring barley. Soil Till. Res. 79: 153-166.Google Scholar

  • Da Silva A.P., Kay B.D., Perfect E., 1997. Management versus inherent soil properties effects on bulk density and relative compaction. Soil Till. Res. 44: 81-93.Google Scholar

  • Davies R.M., 2010. Some physical properties of arigo seeds. Int. Agrophysics 24(1): 89-92.Google Scholar

  • De Baerdemaeker J., Vandewalle J. (Eds.), 199S. Control appli­cations in post-harvest and processing technology (CAPPT’9S). A postprint volume from the 1st IFAC/CIGR/ EURAGENE/ISHS Workshop, Ostend, Belgium, 1-2 June 199S. International Federation of Automatic Control, Laxen­burg (Austria): 321 pp.Google Scholar

  • Dexter A.R., Richard G., Arrouays D., Czyż E.A., Jolivet C., Duval O., 2008. Complexed organic matter controls soil physical properties. Geoderma 144: 620-627.CrossrefGoogle Scholar

  • Dębicki R., 2011. Conditioners, effect on soil physical proper­ties. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer, Dordrecht, Heidelberg, London, New York: 14S-148.Google Scholar

  • Dobrzański B. jr., Rybczyński R., 2011. Physical properties of raw materials and agricultural products. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Sprin­ger Dordrecht, Heidelberg, London, New York: S81-S90.Google Scholar

  • Dodd I. C., 200S. Root-to-shoot signalling: assessing the roles of “up” in the up and down world of long-distance signalling in planta. Plant and Soil 274: 2S1-270.Google Scholar

  • Dziki D., Laskowski J., 2011. Cereals, evaluation of utility valu­es. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 110-113.Google Scholar

  • Dziki D., Laskowski J., Siastala M., Biernacka B., 2010. Influ­ence of moisture content on the wheat kernel mechanical pro­perties determined on the basis of shear test. Int. Agrophysics 24(3): 237-242.Google Scholar

  • Emadzadeh B., Razavi S.M.A., Farahmandfar R., 2010. Monito­ring geometric characteristics of rice during processing by image analysis system and micrometer measuring. Int. Agro­physics 24(1): 21-27.Google Scholar

  • Ercisli S., Ozturk I., Kara M., Kalkan F., Seker H., Duyar O., Erturk Y., 2011. Physical propertuies of hazelnuts. Int. Agro­physics 25(2): 11S-121.Google Scholar

  • Esehaghbeygi A., 2010. Physical properties of common beans. Int. Agrophysics 24(4): 423-426.Google Scholar

  • Esehaghbeygi A., Ardforoushan M., Monajemi S.A.H., Maso- umi A.A., 2010. Digital image processing for quality ranking of saffron peach. Int. Agrophysics 24(2): 11S-120.Google Scholar

  • Farkas I., 2011a. Greenhouse climate control. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec. J., Eds.). Sprin­ger Dordrecht, Heidelberg, London, New York: 340-341.Google Scholar

  • Farkas I., 2011b. Solar drying of biological materials. [In:] En­cyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 819-822.Google Scholar

  • Fernandez J.E., Sławiński C., Moreno F., Lamorski K., Walczak R.T., Vanclooster M., 2004. Experimental verification of the agrophysical models. [In:] Basic problems of agrophysics. (Matyka-Sarzyńska D., Walczak R.T., Eds.). Lublin. Institute of Agrophysics PAS: 41-49.Google Scholar

  • Frączek Z., Slipek Z., 2009. Significance of agrophysics in the area of agriculture and technological investigations (In Po­lish). Biuletyn Informacyjny PTA 29: 6-16.Google Scholar

  • Frączek J., Slipek Z., 2011. Mechanical impacts at harvest and after harvest technologies. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 463-466.Google Scholar

  • Frimpong J.O., Amoatey H.M., Ayeh E.O., Asare O.K., 2011. Pro­duction and soil water use by rainfed maize genotypes in a co­astal savannah environment. Int. Agrophysics 25(2): 123-129.Google Scholar

  • Fujimaki H., Kikuchi N., 2010. Drought and salinity tolerances of young Jatropha. Int. Agrophysics 24(2): 121-127.Google Scholar

  • Gliński J., Stępniewski W., 198S. Soil aeration and its role for plants. CRC Press, Inc.: 229. pp.Google Scholar

  • Gliński J., Lipiec J., 1990. Soil physical conditions and plant roots. CRC Press, Inc.: 2S0 pp.Google Scholar

  • Gliński J., Brzezińska M., Włodarczyk T., Szarlip P., 2010. Re­spiration in soil: conditions and effects. Polska Akademia Nauk Oddział w Lublinie: 7S pp.Google Scholar

  • Gliński J., Horabik J., Lipiec J. 2011a. Agrophysics: physics ap­plied to agriculture. [In:] Encyclopedia of agrophysics (Gliń­ski J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, He­idelberg, London, New York: 36-48.Google Scholar

  • Gliński J., Horabik J., Lipiec J. (Eds.), 2011b. Encyclopedia of agrophysics. Springer Dordrecht, Heidelberg, London, New York: 1100 pp.Google Scholar

  • Gliński J., Stępniewska Z., Stępniewski W., Banach A., 2012. Oxydation-reduction (Redox) properties of soils. Polish Aca­demy of Sciences Branch in Lublin: 129 pp.Google Scholar

  • Gladyszewska B., Baranowski P., Mazurek W., Ciupak A., Woź­niak J., 2011. Radiation temperature of tomatoes and mecha­nic prioperties of their skin. Int. Agrophysics 25(2): 131-139.Google Scholar

  • Gorjian S., Tavakkoli Hashjin T., Khoshtaghaza M.H., 2011. Designing and optimizing a back propagation neural network to model a thin-layer drying process. Int. Agrophysics 25(1): 13-19.Google Scholar

  • Gromke C., Burri K., 2011. Wind erosion. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: . 1001-1004.Google Scholar

  • Grundas S., Nawrocka A., Pecen J., 2011. Grain physics. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 32S-329.Google Scholar

  • Hakansson I., Lipiec J., 2000. A review of the usefulness of rela­tive bulk density values in studies of soil structure and com­paction. Soil Till. Res. 53: 71-8S.Google Scholar

  • Hakansson I., Myrbeck L., Etana A., 2002. A review of research on seedbed preparation for small grains in Sweden. Soil Till. Res. 64: 23-40.Google Scholar

  • Harris D., 1996. The effects of manure, genotype, seed priming, depth and date of sowing on the emergence and early growth of Sorghum bicolor (L.) Moench in semi-arid Botswana. Soil Till. Res. 40: 73-88.Google Scholar

  • Hatano R., 2011. Greenhouse gas fluxes: effects of physical con­ditions. [In:] Encyclopedia of agrophysics (Gliński J., Hora­bik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, Lon­don, New York: 341-3S3.Google Scholar

  • Hatano R., Lipiec J., 2004. Effects of land use and cultural prac- tuises on greenhouse gas fluxes in soil. Acta Agrophysica 6: 109 pp.Google Scholar

  • Hlaváčová Z., 2011. Electrical properties of agricultural products. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Li­piec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 239-243.Google Scholar

  • Holst J.M.F.G., Ooi J.Y., Rotter J.M., Rong G.H., 1999a. Nume­rical modeling of silo filling I: continuum analyses. Journal of Engineering Mechanics-ASCE 125: 94-103.Google Scholar

  • Holst J.M.F.G., Ooi J.Y., Rotter J.M., Rong G.H., 1999b. Nume­rical modeling of silo filling II. Discrete element analyses. Journal of Engineering Mechanics-ASCE 125: 104-110.Google Scholar

  • Horabik J., Molenda M., 2011. Isotropy and anisotropy in agri­cultural products and foods [In:] Encyclopedia of agrophy­sics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Do­rdrecht, Heidelberg, London, New York: 409-411.Google Scholar

  • Horn R., Peth S., 2011. Mechanics of unsaturated soils for agri­cultural applications. Chapter 3. [In:] Handbook of soil scien­ces. 2nd ed. Taylor and Francis (Huang P.M., Li Y., Sumner M.E., Eds.): 31.Google Scholar

  • Horn R., Way T., Rostek J., 2003. Effect of repeated tractor whe­eling on stress/strain properties and consequences on physical properties in structured arable soils. Soil Till. Res. 73: 101-106.Google Scholar

  • Izli N., Isik E., 2010. Determination of economic cost, vigour and rate of germination in batch drying of maize seeds. Int. Agrophysics 24(1): 93-96.Google Scholar

  • Jaros H., 2010. Effect of dehadration on the changes in the volu­me of mucks and peats depending on the type of formation and the degree of its transformation. [In:] Physical, chemical and biological processes in soils (Szajdak L.W., Karabanov A.K., Eds.). The Committee on Land Reclamation and Agri­cultural Environment Engineering, Polish Academy of Scien­ces, Poznań: 55-65.Google Scholar

  • Jayas D.S., Singh C.B., 2011. Drying of agricultural products. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Li­piec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 232-233.Google Scholar

  • Kaleta A., Górnicki K., 2011a. Air flux (resistance) in plants and agricultural products. [In:] Encyclopedia of agrophysics (Gliń­ski J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, He­idelberg, London, New York: 48-49.Google Scholar

  • Kaleta A., Górnicki K., 2011b. Databases on physical properties of plants and agricultural products.. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 189-194.Google Scholar

  • Karimi F., 2010. Applications of superheated steam for the dry­ing of food products. Int. Agrophysics 24(2): 195-204.Google Scholar

  • Karimi N., Arabhosseini A., Kianmehr M.H., Khazaei J., 2011. Modelling of raisin berries by some physical and statistical characteristics. Int. Agrophysics 25(2): 141-147.Google Scholar

  • Kasprzak M., Rzedzicki, Z., 2010. Effect of pea seed coat admi­xture on physical properties and chemical composition of bre­ad. Int. Agrophysics 24(2 ): 149-156.Google Scholar

  • Kędziora A., 2011. Windbreaks and shelterbelts functions. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 1004-1008.Google Scholar

  • Khazaei J., Ghanbari S., 2010. New method for simultaneously measuring the angles of repose and frictional properties of wheat grains. Int. Agrophysics 24(3): 275-286.Google Scholar

  • Konstankiewicz K., 2011. Microstructure of plant tissue. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 478-483.Google Scholar

  • Konstankiewicz K., Pytka J., 2008. Soil engineering. [In:] En­cyclopedia of soil science (Chesworth W., Ed.). Dordrecht. Springer: 646-656.Google Scholar

  • Kram B.B., 2011. Grains, aerodynamic features. [In:] Encyclo­pedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 329­334.Google Scholar

  • Kuderma M., Zsolnay A., 2011. Desertification: indicators and thresholds. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 200-207.Google Scholar

  • Kutilek M., 2011. Climate change, environmental effect. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 126-13S.Google Scholar

  • Lamorski K., Pachepsky Y., Sławiński C., Walczak R., 2008. Using support vector machines to develop pedotransfer functions for water retention of soils in Poland. Soil Sci. Soc. Am. J. 72(5): S3-S7.CrossrefGoogle Scholar

  • Lewicki P.P., 2011. Water effects on physical properties of raw materials and foods. . [In:] Encyclopedia of agrophysics (Gliń­ski J., Horabik J., Lipiec J., Eds.). Springer, Dordrecht, He­idelberg, London, New York: 968-972.Google Scholar

  • Lipiec J., Gliński J., 1997. Field soil compaction: effects on soil physical properties and stomatal resistance of wheat. Proce­edings International Symposium „Soil, human and environ­ment interactions”, China Science and Technology Press: 422­427.Google Scholar

  • Lipiec J., Hatano R., 2003. Quantification of compaction effects on soil physical properties and crop growth. Geoderma 116: 107-136.CrossrefGoogle Scholar

  • Lipiec J., Medvedev V.V., Birkas M., Dumitru E., Lyndina T.E., Rousseva S., Fulajtar E., 2003. Effect of soil compaction on root growth and crop yield in Central and Eastern Europe. Int. Agrophysics 17: 61-69.Google Scholar

  • Lipiec J., Nosalewicz A., Pietrusiewicz J., 2011. Crop responses to soil physical conditions. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 167-176.Google Scholar

  • Luo Y., Zhou X., 2006. Soil respiration and the environment. Academic Press, Elsevier: 328 pp.Google Scholar

  • Łapko A., 2010. Pressure of agricultural bulk solids under ec­centric discharging of cylindrical concrete-silo bin. Int. Agro­physics 24(1): 51-56.Google Scholar

  • Mazurek W., Walczak R.T., Sobczuk H.A., Baranowski P., 1996. The model investigation of soil water content and soil water potential impact on radiation temperature of meadow plant cover. Zeszyty Problemowe Postępów Nauk Rolniczych 436: 93-100.Google Scholar

  • McGuire A.D., Sitch S., Clein J.S., Dargaville R., Esser G., Fo­ley J., Heimann M., Joos F., aplan J., Kicklighter D.W., Meier R.A., Melillo J.M., Moore B., Prentice I.C., Ramankutty N.. Reichenau T., Schloss A., Tian H., Williams L. J., Wittenberg, U., 2001. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of C02, climate and land-use ef­fects with four process-based ecosystem models. Global Bio­geochemical Cycles 15(1): 183-206.Google Scholar

  • Mohsenin N.N., 1986. Physical properties of plant and animal materials. 2nd ed. New Year: Gordon and Breach: 891 pp.Google Scholar

  • Molenda M., 2011. Aeration of agricultural products. [In:] En­cyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 7-8.Google Scholar

  • Molenda M., Horabik J., 2011. Phenomena and properties im­portant for storage of agricultural products. [In:] Encyclope­dia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: S69- S7S.Google Scholar

  • Monteith J., Unsworth M., 2007. Principles of environmental physics. Academic Press: 418 pp.Google Scholar

  • Moreda G.P., Ruiz-Altisent M., 2011. Quality of agricultural pro­ducts in relation to physical conditions. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 671-680.Google Scholar

  • Moreno F., Murillo J.M., Madejón E., 2011. Carbon losses un­der dryland conditions,tillage effects. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec. J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 108-110.Google Scholar

  • Nelson S.O., Trabelsi S., 2011. Dielectric properties of agricul­tural products. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 207-213.Google Scholar

  • Neyde Fabiola, Balarezo Giarola, Herdjania Veres de Lima, Alvaro Pires de Silva., 2011. Hardsetting soils physical properties. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Li­piec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 362-36S.Google Scholar

  • Novák V., Lipiec J., 2012. Water extraction by roots under envi­ronmental stresses. [In:] Pollution and Water Resources, Co­lumbia University Seminar Proceedings: Impact of Anthro­pogenic Activity and Climate Changes on the Environment of Central Europe and USA. Volume XLI. Ed. J. Halasi-Kun; v. Stekauerová, I. Fodor, V. Nagy, R. Lo Pinto. - Pécs: Hunga­rian Academy of Sciences: 16S-180.Google Scholar

  • Obuchowski W., Salmanowicz B., Banaszak Z., Adamski T., Sur­ma M., Kaczmarek Z., Majcher M., Ługowska B., Kuczyń­ska A., Krystkowiak K., 2010. Grain hardness of wheat bred in Poland and its relationship to starch damage during mil­ling. Int. Agrophyics 24(1): S9-74.Google Scholar

  • Ogunsina B.S., Olaoye I.O., Adegbenjo A.O., Babawale B.D., 2011. Nutritional and physical properties of kariya seeds. Int. Agrophysics 25(1): 97-100.Google Scholar

  • Ozturk I., Bastaban S., Ercisli S., Kalkan F., 2010. Physical and chemical properties of three late ripening apple cultivars. Int. Agrophysics 24(4): 3S7-361.Google Scholar

  • Pabis S., Jayas D.S., Cenkowski S., 1998. Grain drying: Theory and practice. New York. Wiley: 303 pp.Google Scholar

  • Pachepsky Y., Rawls W. J., Giménez D., 2001. Comparison of soil water retention at field and laboratory scales. Soil Sci. Soc. Am. Proc. 65: 460-462.CrossrefGoogle Scholar

  • Pagliai M., Marsili A., Servadio P., Vignozzi N., Pellegrini S., 2003. Changes in some physical properties of a clay soil in Central Italy following the passage of rubber tracked and wheeled tractors of medium power. Soil Till. Res. 73: 119­129.Google Scholar

  • Papadopoulos A., 2011. Organic farming, effect on soil physical environment. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: S29-S30.Google Scholar

  • Peng X.H., Horn R., 2008. Time-dependent, anisotropic pore structure and soil strength in a 10-year period after intensive tractor wheeling under conservation and conventional tillage. J .Plant Nutr. Soil Sci. 171: 936-944.Google Scholar

  • Pieczywek P.M., Zdunek A., Umeda M., 2011. Study on parame- terisation of plant tissue microstructure by confocal micro­scopy for finite elements modelling. Computers and Electro­nics in Agriculture 78: 98-10S.Google Scholar

  • Pietrzyk W., Horyński M., 2011. Organic dusts, electrostatic pro­perties. [In:] Encyclopedia of agrophysics (Gliński J., Hora­bik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, Lon­don, New York: S23-S26.Google Scholar

  • Podolska G., 2011. Plant lodging, effects and control. [In:] En­cyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.) Springer Dordrecht, Heidelberg, London, New York: 612 pp.Google Scholar

  • Pukos A., 1994. Quantitative descriptions of structural changes in soil and plant material during deformation. Int. Agrophy­sics 8: 103-112. Quinton J.N., 2011. Soil erosion modeling. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Sprin­ger Dordrecht, Heidelberg, London, New York: 748-749.Google Scholar

  • Rejman J., 2011. Water erosion, environmental and economical hazards. [In:] Encyclopedia of agrophysics (Gliński J., Hora­bik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, Lon­don, New York: 972-974.Google Scholar

  • Reszkowska A., Krummelbein J., Gan L., Peth S., Horn R., 2011. Influence of grazing on soil water and gas fluxes of two Inner Mongolian steppe ecosystems. Soil Till. Res. III: 180-189.Google Scholar

  • Ruiz-Altisent M., Moreda G.P., 2011. Fruits, mechanical proper­ties and bruise susceptibility. [In:] Encyclopedia of agrophy­sics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Do­rdrecht, Heidelberg, London, New York: 320-323.Google Scholar

  • Rusin T., Kojs P., 2011. Plant biomechanics. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Sprin­ger Dordrecht, Heidelberg, London, New York: 604-607.Google Scholar

  • Sahin S., Sumnu S.G., 2006. Physical properties of foods. Food Science Text Series. New York: Springer: 2S7 pp.Google Scholar

  • Salama R.B., 2011. Remote sensing of soils and plants imagery. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Li­piec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 681-693.Google Scholar

  • Scarlon M.G., 2011. Physical properties as indicators of food quality. [In:] Encyclopedia of agrophysics (Gliński J., Hora­bik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, Lon­don, New York: S7S-S80.Google Scholar

  • Scott H. Don., 2000. Soil physics: Agriculture and environmen­tal applications. Iowa State University Press, Ames: 421 pp.Google Scholar

  • Schachtman D.P., Goodger J.Q.D., 2008. Chemical root to shoot signaling under drought. Trends in Plant Science 13: 281- 287. doi:10.1016/j.tplants.2008.04.003.CrossrefGoogle Scholar

  • Skierucha W.M., 2011. Monitoring physical conditions in agri­culture and environment. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 489-492.Google Scholar

  • Sławiński C., Sobczuk H., 2011. Soil-plant-atmosphere system. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Li­piec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 89S-810.Google Scholar

  • Soane B.D., Van Ouwerkerk C. (Eds.) 1994. Soil compaction in crop production. Developments in Agricultural Engineering Series II. Elsevier Science, Amsterdam, Netherlands: 662 pp.Google Scholar

  • Soil Science Glossary Terms Committee, 2008. Glossary of Soil Science Terms 2008. Madison, Soil Science Society of Ame­rica: 92 pp.Google Scholar

  • Stekauerova V., 2011. Weather, effects on plants. [In:] Encyclo­pedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 988­991.Google Scholar

  • Sujak A., Dziwulska-Hunek A., 2010. Minerals and fatty acids of amaranth seeds subjected to pre-sowing electromagnetical sti­mulation. Int. Agrophysics 24(4 ): 375-379.Google Scholar

  • Sweeney D.W., Kirkham M.B., Sisson J.B., 2006. Crop and soil response to wheel-track compaction of a claypan soil. Agro­nomy Journal 98: 637-643.Google Scholar

  • Szot B., Szpryngiel M., Tys J., 2011. Crop yield losses reduction at harvest, from research to adoption. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 177-180.Google Scholar

  • Taboada M.A., Fernandez P.L., Varela M.F., 2011. Flooding, ef­fects on soil structure. [In:] Encyclopedia of agrophysics (Gliń­ski J., Horabik J., Lipiec J., Eds.) Springer Dordrecht, He­idelberg, London, New York: 304-308.Google Scholar

  • Townend J., Mtakwa P.W., Mullins C.E., Simmonds L.P., 1996. Soil physical factors limiting establishment of sorghum and cowpea in two contrasting soil types in the semi-arid tropics. Soil Till. Res. 40: 89-106.Google Scholar

  • Usowicz B., Lipiec J., 2009. Spatial distribution of soil penetra­tion resistance as affected by soil compaction: The fractal ap­proach. Ecological Complexity 6: 263-271.CrossrefGoogle Scholar

  • Van Genuchten M.Th., 1980. A closed-form equation for predic­ting hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44: 892-898.Google Scholar

  • Vicente A.A., Machado L.F., 2011. Thermal technologies in food processing. [In:] Encyclopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 900-904.Google Scholar

  • Walczak R.T., Witkowska-Walczak B., Baranowski P., 1997. Soil structure parameters in models of crop growth and field pre­diction. Physical, submodels. Int. Agrophysics 11: 111-127.Google Scholar

  • Warkentin B.P., 2000. Clay surface changes on soil compaction. [In:] Subsoil compaction-distribution, processes and conse­quences (Horn R., Van Den Akker J.J.H., Arvidsson J., van Noordwijk M., Eds.). Adv. Geoecol. 32. Catena, Reiskirchen, Germany: 64-72.Google Scholar

  • Whalley W.R., Lipiec J., Stępniewski W., Tardieu F., 2000. Con­trol and measurement of the physical environment in root growth experiments. [In:] Root methods. A handbook (Smit A.L., Bengough A.G., Engels C., van Noordwijk M., Pellerin S., van de Geijn S.C., Eds.), Springer-Verlag, Berlin: 76-112.Google Scholar

  • Wiącek J., Molenda M., 2011. Moisture-dependent physical pro­perties of rapeseed - experimental and DEM modeling. Int. Agrophysics 25(1): 59-65Google Scholar

  • Włodarczyk T., 2011. Greenhouse gases sink in soil. [In:] Encyc­lopedia of agrophysics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Dordrecht, Heidelberg, London, New York: 353-356.Google Scholar

  • Wójciga A., Bolte K., Horn R., Stępniewski W., Bajuk E., 2009. Surface shear resistance of soils on the micro- to mesoscale. Int. Agrophysics 23: 391-398.Google Scholar

  • Xinlin Li, Min Zhang, Xu Duan, Arun S. Mujumdar., 2011. Ef­fect of nano-silver coating on microbial control of microwa- ve-freeze combined dried sea cucumber. Int. Agrophysics 25(2): 181-186.Google Scholar

  • Zdunek A., Cybulska, J., Konopacka D., Rutkowski K., 2011. Inter-laboratory analysis of firmness and sensory texture of stored apples. Int. Agrophysics 25(1): 67-75.Google Scholar

  • Zhang J., 2011. Tillage erosion. [In:] Encyclopedia of agrophy­sics (Gliński J., Horabik J., Lipiec J., Eds.). Springer Do­rdrecht, Heidelberg, London, New York: 908-911.Google Scholar

  • Zhang J., Davies W.J., 1989. Abscisic acid produced in dehydra­ting roots may enable the plant to measure the water status of the soil. Plant, Cell and Environment 12: 73-81.Google Scholar

  • Zhiguo Li, Pingping Li, Jizhan Liu., 2011. Effect of mechanical damage on mass loss and water content in tomato fruits. Int. Agrophysics 25(1): 77-83Google Scholar

About the article

Published Online: 2013-09-19

Published in Print: 2013-08-01


Citation Information: Soil Science Annual, ISSN (Print) 0080-3642, DOI: https://doi.org/10.2478/ssa-2013-0012.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in