Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Soil Science Annual

formerly Roczniki Gleboznawcze

4 Issues per year

Index Copernicus Value- 93.69 pkt

Open Access
Online
ISSN
2300-4975
See all formats and pricing
More options …

The effect of urbanization on soil properties and soil organic carbon accumulation in topsoil of Pruszków – a medium-sized city in the Warsaw Metropolitan Area, Poland

Lidia Oktaba
  • Corresponding author
  • Warsaw University of Life Science . SGGW, Department of Soil Environment Sciences Nowoursynowska 159, 02-776 Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kamil Paziewski
  • Warsaw University of Life Science . SGGW, Department of Soil Environment Sciences Nowoursynowska 159, 02-776 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wojciech Kwasowski
  • Warsaw University of Life Science . SGGW, Department of Soil Environment Sciences Nowoursynowska 159, 02-776 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marek Kondras
  • Warsaw University of Life Science . SGGW, Department of Soil Environment Sciences Nowoursynowska 159, 02-776 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-05-08 | DOI: https://doi.org/10.2478/ssa-2014-0002

Abstract

The objective of the study was to determine properties of soils located within a city, and to assess the effect of anthropopressure on the accumulation of carbon and nitrogen in soils of Pruszków . a medium sized town in central Poland. Surface soil layers (0.20 cm) were collected at 36 sites. A total of 12 samples from lawns, 11 from allotment gardens, 9 from fields and 4 from fallow lands were subject to analysis. Lawns and allotment gardens were treated as central zone I . under strong pressure of anthropogenic factors, fields and fallow lands were treated as zone II . with potentially low level of anthropogenic influence. The statistical analysis showed significantly higher (p=0.008) amount of organic carbon (Corg) in lawns (mean 20.5 g·kg-1) and allotment gardens (21.7 g·kg-1) . zone I, than on fallow lands (10.4 g·kg-1) and fields (1.27 g·kg-1) . zone II. The surface layer of soil from allotment gardens also contained significantly higher amount of total nitrogen (mean content 1.1 g·kg-1) than others. The amounts of Corg not depending on the soil texture and very high C/N ratio, suggests the anthropogenic origin of the carbon. The C/N ratio was the highest in the soils of lawns (mean value 26.2) and significantly differed (p=0.04) from C/N ratios in soils of fields and allotment gardens. This suggests low intensity of humus transformation. Other chemical characteristics as hydrolytic acidity (Ha), cation exchange capacity (CEC), exchangeable base cations (EBC) and EBC share in CEC were also higher in central part of Pruszków town (zone I), indicating the effect of urbanization on soil properties.

Streszczenie

Celem pracy było określenie właściwości gleb różnie użytkowanych i ocena wpływu antropopresji na akumulację węgla oraz azotu w glebach Pruszkowa - średniej wielkości miasta w centralnej Polsce. Przedmiotem analizy były powierzchniowe warstwy gleby (0-20 cm) zebrane w 36 miejscach. We wszystkich przypadkach pobierano próbki mieszane. Łącznie analizow ano 12 próbek z trawników, 11 z ogródków działkowych, 9 z pól i 4 z nieużytków. Trawniki i ogrody działkowe były traktowane jako centralna strefa I - pod silną presją czynników antropogenicznych, natomiast pola i nieużytki były traktowane jako strefa II - o potencjalnie niskim poziomie antropogenicznego wpływu. Analiza statystyczna wykazała istotnie wyższe (p = 0,008) ilości węgla organicznego (Corg) w glebach trawników (średnia 20,5 g-kg-1) i ogródków' działkowych (21,7g kg_l) ze strefy I, niż w glebach nieużytków (10,4 g-kg-1) i pól (1,27 g-kg-1) ze strefy II. Powierzchniowa warstwa gleby z ogródków działkowych zaw ierała również znacznie większą ilość azotu ogólnego (Nt) (średnio 1,1 g-kg-1) niż gleby innych sposobów użytkowania. Nie stwierdzono zależno- ści ilości Corg od składu granulo metrycznego gleby, co w połączeniu z bardzo wysokim stosunkiem C/N sugerować może antropoge- niczne pochodzenie w ęgla. Stosunek C/N najwyższy był w glebach trawników (wartość średnia 26,2) i znacząco różnił się (p = 0,04) od wskaźników C/N w glebach pól i ogródków działkowych. To wskazuje na niską intensywność transformacji humusu. Inne właściwo- ści chemiczne, jak: kwasowość hydrolityczna, pojemność sorpcyjna, wymienne kationy zasadowe były również wyższe w centralnej części miasta Pruszkowa. Dane te wykazują wpływ urbanizacji na właściwości gleby.

Keywords: urban soils; land use; carbon accumulation; nitrogen; soil properties

Słowa kluczowe: gleby miejskie; sposób użytkowania; akumulacja węgla; azot; właściwości gleby

References

  • Beyer L., Blume H.P., Elsner D.C., Willnow A., 1995. Soil organic matter composition and microbial activity in urban soil. Science of Total Environment, 168: 267.278.Google Scholar

  • Bieliñska E.J., Futa B., Ligeza S., 2009. Relationship between organic carbon content and the activity of selected enzymes in urban soils. Roczniki Gleboznawcze . Soil Science Annual, 60(3): 12.17.Google Scholar

  • Brown S., Miltner E., Cogger C., 2012. Carbon sequestration potential in urban soils. Carbon Sequestration in Urban Ecosystems: 173.196.Google Scholar

  • Chuai X.W., Huang X.J., Wang W.J., Zhang M., Lai L., Liao Q.L., 2012. Spatial variability of soil organic carbon and related factors in Jiangsu Province, China. Pedosphere, 22(3): 404.414.Web of ScienceCrossrefGoogle Scholar

  • Edmondson J.L., Davies Z.G., McHugh N., Gaston K.J., Leake J.R., 2012. Organic carbon hidden in urban ecosystems. Scientific Reports, 2: 963, doi:10.1038/srep00963.PubMedCrossrefGoogle Scholar

  • Gonet S.S., 2007. Protection of soil organic matter. [In:] The role of organic matter in the environment (Gonet S.S., Markiewicz M., Editors ). PTSH, Wroc³aw, pp. 7.29 (in Polish).Google Scholar

  • GUS, 2011. Road transport in Poland in the years 2005.2009. Information and statistical studies. Warszawa/Szczecin: 174.184.Google Scholar

  • Haumaier L., Zech W., 1995. Black carbon-possible source of highly aromatic components of soil humic acids. Organic Geochemistry, 23(3): 191.196.CrossrefGoogle Scholar

  • Klejnowski K., Rogula P., B³aszczyk J., Rogula-Kozlowska W., 2010. Identification of organic and elemental carbon concentration in some area in Poland. Pol-Emis: 183.194. http://www.pzits.not.pl/docs/ksiazki/pol_2010.html. (in Polish).Google Scholar

  • Komisja V Genezy, Klasyfikacji i Kartografii Gleb PTG, 1989. Systematyka Gleb Polski, wyd. 4, Roczniki Gleboznawcze . Soil Science Annual, 40,(3/4): 132.133. (in Polish).Google Scholar

  • Kusiñska A., 1991. Transformation of organic matter in soils of greens and parks of the £ód. city. Roczniki Gleboznawcze . Soil Science Annual, 42,(1/2): 101.107.Google Scholar

  • Liu Y., Wang Ch., Yue W., Hu Y., 2013. Storage and density of soil organic carbon in urban topsoil of hilly cities: A case study of Chongqing Municipality of China. Chinese Geographical Science, 23(1): 26.34.Web of ScienceCrossrefGoogle Scholar

  • Lorenz K., Kandeler E., 2005. Biochemical characterization of urban soil profiles from Stuttgart, Germany. Soil Biology and Biochemistry, 37: 1373.1385.Google Scholar

  • Lorenz K., Preston C.M., Kandeler E., 2006. Soil organic matter in urban soils: Estimation of elemental carbon by thermal oxidation and characterization of organic matter by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Geoderma, 130: 312.323.Google Scholar

  • Meuser H., 2010. Assessment of urban soils. [In:] Contaminated urban soils. Environmental Pollution, 18: 243.246.CrossrefGoogle Scholar

  • Ministry of Regional Development, 2010. The development of cities in Poland . introductory report of the Ministry of Regional Development, developed for the preparation of the OECD review of national urban policy in Poland. Warszawa, pp. 30.209 (in Polish).Google Scholar

  • Moretto L.M., Silvestri S., Ugo P., Zorzi G., Abbondazi F., Baiocchi C., Iacondini A., 2005. Polycyclic aromatic hydrocarbons degradation by composting in a soot-contaminated alkaline soil. Journal of Hazardous Materials, B, 126: 141.148.Google Scholar

  • Norra S., Stüben D., 2003. Urban soils [In:] Global soils: Germany. Journal of Soils and Sediments, 3(4): 230.233.Web of ScienceCrossrefGoogle Scholar

  • Pouyat R., Groffman O., Yesilonis I., Hernandez L., 2002. Soil carbon pools and fluxes in urban ecosystems. Environmental Pollution, 116: 107.118.CrossrefGoogle Scholar

  • Pouyat R.V., Yesilonis I.D., Nowak D.J., 2006. Carbon storage by urban soils in the United States. Journal of Environmental Quality, 35: 1566.1575.PubMedCrossrefGoogle Scholar

  • Prokof.eva., Gerasimowa M., Lebedeva I., Martynenko I., 2013. An attempt of integrating the systematic of urban soils into the new Russian soil classification system. Soil Science Annual, 64(1): 24.29.Google Scholar

  • Quënëa K., Derenne S., Rumpel C., Rouzaud J.N., Gustafsson O., Carcaillet C., Mariotti A., Largeau C., 2006. Black carbon yields and types in forest and cultivated sandy soils (Landes de Gascogne, France) as determined with different methods: Influence of change in land use. Organic Geochemistry, 37: 1185.1189.CrossrefGoogle Scholar

  • Rockne K.J., Taghon G.L., Kosson D.S., 2000. Pore structure of soot deposits from several combustion sources. Chemosphere, 41: 1125.1135.PubMedCrossrefGoogle Scholar

  • Roth P.J., Lehndorff E., Brodowski S., Bornemann L., Sanchez- Garcia L., Gustafsson Õ., Amelung W., 2012. Differentiation of charcoal, soot and diagenetic carbon in soil: Method comparison and perspectives. Organic Geochemistry, 46: 66.75.CrossrefWeb of ScienceGoogle Scholar

  • Rumpel C., Knicker H., Kõgel-Knabner I., Hûttl R.F., 1998. Airborne contamination of immature soil (Lusatian Mining District) by lignite . derived materials: its detection and contribution to the soil organic matter budget. Water, Air and Soil Pollution, 105: 481.492.CrossrefGoogle Scholar

  • Van Reeuwijk L.P., 2002. Procedures for soil analysis (6th ed.). Tech. Pap. 9, ISRIC, Wageningen.Google Scholar

  • Vegter J., 2007. Urban soils . an emerging problem? [In:] Urban soils . An emerging problem? Journal of Soils and Sediments, 7(2): 63.Web of ScienceCrossrefGoogle Scholar

  • Wang M., Markert B., Shen W., Chen W., Peng Ch., Ouyang Z., 2011. Microbial biomass carbon and enzyme activities of urban soils in Beijing. Environmental Science and Pollution Research, 18: 958.967.Web of ScienceCrossrefGoogle Scholar

  • Yang Y., Mahler B.J., Van Metre P.C., Ligouis B., Werth C.J., 2010. Potential contributions of asphalt and coal tar to black carbon quantification in urban dust, soils, and sediments. Geochimica et Cosmochimica Acta, 74: 6830.6840.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2013-12-18

Accepted: 2014-04-01

Published Online: 2014-05-08

Published in Print: 2014-03-01


Citation Information: Soil Science Annual, ISSN (Online) 2300-4975, DOI: https://doi.org/10.2478/ssa-2014-0002.

Export Citation

© by Lidia Oktaba. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Agnieszka Klimkowicz-Pawlas, Bozena Smreczak, and Aleksandra Ukalska-Jaruga
Environmental Science and Pollution Research, 2017, Volume 24, Number 12, Page 10955

Comments (0)

Please log in or register to comment.
Log in