Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Sport Science Review

The Journal of National Institute for Sport Research

3 Issues per year

Open Access
Online
ISSN
2069-7244
See all formats and pricing
More options …

Biomechanics of Cycling

Borut Fonda / Nejc Sarabon
  • Institute for Kinesiological Research, Science and Research Centre, University of Primorska, Koper, Slovenia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-01-24 | DOI: https://doi.org/10.2478/v10237-011-0012-0

Biomechanics of Cycling

The aim of this review paper is to outline the effects of several biomechanical factors on cycling efficiency and safety. The paper begins with a short introduction and listing of basic concepts important for understanding the biomechanics of cycling, followed by an explanation of mechanical forces and torques that are created during pedaling. Workloads and joint movement are detailed in chapter three, which is augmented by chapter four on muscle activation patterns. Throughout the text we have paid careful attention in interpreting the results of research studies into changes in bicycle geometry, feet position, terrain incline and other cycling-related factors. The paper closes with an overview of all issues and solutions as well as presenting proposals for additional research.

Keywords: biomechanics; cycling; mechanical force; torque

  • Asmussen, E. (1979). Muscle fatigue. Medicine and Science in Sports, 11(4), 313-321.Google Scholar

  • Bertucci, W., Grappe, F., Girard, A., Betik, A., & Rouillon, J. D. (2005). Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling. Journal of Biomechanics, 38(5), 1003-1010.CrossrefGoogle Scholar

  • Bertucci, W., Grappe, F., & Groslambert, A. (2007). Laboratory versus outdoor cycling conditions: differences in pedaling biomechanics. Journal of Applied Biomechanics, 23(2), 87-92.Google Scholar

  • Burke, E. R. (1994). Proper fit of the bicycle. Clinics in Sports Medicine, 13(1), 1-14.Google Scholar

  • Cannon, D. T., Kolkhorst, F. W., & Cipriani, D. J. (2007). Effect of pedaling technique on muscle activity and cycling efficiency. European Journal of Applied Physiology, 99(6), 659-664.CrossrefWeb of ScienceGoogle Scholar

  • Cavanagh, P. R., & Komi, P. V. (1979). Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. European Journal of Applied Physiology and Occupational Physiology, 42(3), 159-163.CrossrefGoogle Scholar

  • Chapman, A. R., Vicenzino, B., Blanch, P., Knox, J. J., Dowlan, S., & Hodges, P. W. (2008). The influence of body position on leg kinematics and muscle recruitment during cycling. Journal of Science and Medicine in Sport / Sports Medicine Australia, 11(6), 519-526. doi:10.1016/j.jsams.2007.04.010CrossrefGoogle Scholar

  • Clarys, J. P., Alewaeters, K., & Zinzen, E. (2001). The influence of geographic variations on the muscular activity in selected sports movements. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 11(6), 451-457.CrossrefGoogle Scholar

  • Coyle, E. F., Feltner, M. E., Kautz, S. A., Hamilton, M. T., Montain, S. J., Baylor, A. M., Abraham, L. D., et al. (1991). Physiological and biomechanical factors associated with elite endurance cycling performance. Medicine and Science in Sports and Exercise, 23(1), 93-107.Google Scholar

  • Davis, R. R., & Hull, M. L. (1981). Measurement of pedal workloading in bicycling: II. Analysis and results. Journal of Biomechanics, 14(12), 857-872.CrossrefGoogle Scholar

  • De Luca, C. J. (1984). Myoelectrical manifestations of localized muscular fatigue in humans. Critical Reviews in Biomedical Engineering, 11(4), 251-279.Google Scholar

  • Dorel, S., Couturier, A., & Hug, F. (2008). Intra-session repeatability of lower limb muscles activation pattern during pedaling. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 18(5), 857-865.Web of ScienceCrossrefGoogle Scholar

  • Duc, S., Bertucci, W., Pernin, J. N., & Grappe, F. (2008). Muscular activity during uphill cycling: effect of slope, posture, hand grip position and constrained bicycle lateral sways. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 18(1), 116-127.CrossrefWeb of ScienceGoogle Scholar

  • Ericson, M. O., Nisell, R., & Nemeth, G. (1988). Joint Motions of the Lower Limb during Ergometer Cycling. The Journal of Orthopaedic and Sports Physical Therapy, 9(8), 273-278.Google Scholar

  • Ericson, M. (1986). On the biomechanics of cycling. A study of joint and muscle workload during exercise on the bicycle ergometer. Scandinavian Journal of Rehabilitation Medicine. Supplement, 16, 1-43.Google Scholar

  • Ericson, M. O., Bratt, A., Nisell, R., Németh, G., & Ekholm, J. (1986). workload moments about the hip and knee joints during ergometer cycling. Scandinavian Journal of Rehabilitation Medicine, 18(4), 165-172.Google Scholar

  • Ericson, M. O., Ekholm, J., Svensson, O., & Nisell, R. (1985). The forces of ankle joint structures during ergometer cycling. Foot & Ankle, 6(3), 135-142.PubMedCrossrefGoogle Scholar

  • Ericson, M. O., & Nisell, R. (1986). Tibiofemoral joint forces during ergometer cycling. The American Journal of Sports Medicine, 14(4), 285-290.CrossrefGoogle Scholar

  • Ericson, M. O., & Nisell, R. (1987). Patellofemoral joint forces during ergometric cycling. Physical Therapy, 67(9), 1365-1369.PubMedGoogle Scholar

  • Ericson, M. O., & Nisell, R. (1988). Efficiency of pedal forces during ergometer cycling. International Journal of Sports Medicine, 9(2), 118-122.CrossrefGoogle Scholar

  • Ericson, M. O., Nisell, R., Arborelius, U. P., & Ekholm, J. (1985). Muscular activity during ergometer cycling. Scandinavian Journal of Rehabilitation Medicine, 17(2), 53-61.Google Scholar

  • Fernández-Peña, E., Lucertini, F., & Ditroilo, M. (2009). A maximum isokinetic pedalling exercise for EMG normalization in cycling. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 19(3), e162-170.CrossrefGoogle Scholar

  • Gregor, R. J., Broker, J. P., & Ryan, M. M. (1991). The biomechanics of cycling. Exercise and Sport Sciences Reviews, 19, 127-169.Google Scholar

  • Hautier, C. A., Arsac, L. M., Deghdegh, K., Souquet, J., Belli, A., & Lacour, J. R. (2000). Influence of fatigue on EMG/force ratio and cocontraction in cycling. Medicine and Science in Sports and Exercise, 32(4), 839-843.CrossrefGoogle Scholar

  • Hettinga, F. J., De Koning, J. J., Broersen, F. T., Van Geffen, P., & Foster, C. (2006). Pacing strategy and the occurrence of fatigue in 4000-m cycling time trials. Medicine and Science in Sports and Exercise, 38(8), 1484-1491.CrossrefGoogle Scholar

  • Hoes, M. J., Binkhorst, R. A., Smeekes-Kuyl, A. E., & Vissers, A. C. (1968). Measurement of forces exerted on pedal and crank during work on a bicycle ergometer atdifferent workloads. Internationale Zeitschrift Für Angewandte Physiologie, Einschliesslich Arbeitsphysiologie, 26(1), 33-42.Google Scholar

  • Houtz, S. J., & Fischer, F. J. (1959). An analysis of muscle action and joint excursion during exercise on a stationary bicycle. The Journal of Bone and Joint Surgery. American Volume, 41-A(1), 123-131.Google Scholar

  • Hug, F., Decherchi, P., Marqueste, T., & Jammes, Y. (2004). EMG versus oxygen uptake during cycling exercise in trained and untrained subjects. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 14(2), 187-195.CrossrefGoogle Scholar

  • Hug, F., & Dorel, S. (2009). Electromyographic analysis of pedaling: a review. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 19(2), 182-198.CrossrefWeb of ScienceGoogle Scholar

  • Jorge, M., & Hull, M. L. (1986). Analysis of EMG measurements during bicycle pedalling. Journal of Biomechanics, 19(9), 683-694.CrossrefGoogle Scholar

  • Krogh, A., & Lindhard, J. (1913). The regulation of respiration and circulation during the initial stages of muscular work. The Journal of Physiology, 47(1-2), 112-136.Google Scholar

  • Laplaud, D., Hug, F., & Grélot, L. (2006). Reproducibility of eight lower limb muscles activity level in the course of an incremental pedaling exercise. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 16(2), 158-166.CrossrefGoogle Scholar

  • Li, L., & Caldwell, G. E. (1998). Muscle coordination in cycling: effect of surface incline and posture. Journal of Applied Physiology (Bethesda, Md.: 1985), 85(3), 927-934.Google Scholar

  • MacIntosh, B. R., Neptune, R. R., & Horton, J. F. (2000). Cadence, power, and muscle activation in cycle ergometry. Medicine and Science in Sports and Exercise, 32(7), 1281-1287.CrossrefGoogle Scholar

  • Neptune, R. R., Kautz, S. A., & Hull, M. L. (1997). The effect of pedaling rate on coordination in cycling. Journal of Biomechanics, 30(10), 1051-1058.CrossrefGoogle Scholar

  • Psek, J. A., & Cafarelli, E. (1993). Behavior of coactive muscles during fatigue. Journal of Applied Physiology (Bethesda, Md.: 1985), 74(1), 170-175.Web of ScienceGoogle Scholar

  • Raasch, C. C., & Zajac, F. E. (1999). Locomotor strategy for pedaling: muscle groups and biomechanical functions. Journal of Neurophysiology, 82(2), 515-525.Google Scholar

  • Raymond, C., Joseph, K., & Gabriel, Y. (2005). Muscle Recruitment Pattern in Cycling. Physical Therapy in Sport, 6(2), 89-96.Google Scholar

  • Rouffet, D. M., & Hautier, C. A. (2008). EMG normalization to study muscle activation in cycling. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 18(5), 866-878.Web of ScienceCrossrefGoogle Scholar

  • Ryan, M., & Gregor, R. (1992). EMG profiles of lower extremity muscles during cycling at constant workload and cadence. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 2(2), 69-80.CrossrefGoogle Scholar

  • Salai, M., Brosh, T., Blankstein, A., Oran, A., & Chechik, A. (1999). Effect of changing the saddle angle on the incidence of low back pain in recreational bicyclists. British Journal of Sports Medicine, 33(6), 398-400.CrossrefGoogle Scholar

  • Sanderson, D. J., & Amoroso, A. T. (2009). The influence of seat height on the mechanical function of the triceps surae muscles during steadyrate cycling. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 19(6), e465-471.CrossrefGoogle Scholar

  • Sanderson, D. J., & Black, A. (2003). The effect of prolonged cycling on pedal forces. Journal of Sports Sciences, 21(3), 191-199.CrossrefGoogle Scholar

  • Takaishi, T., Yamamoto, T., Ono, T., Ito, T., & Moritani, T. (1998). Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists. Medicine and Science in Sports and Exercise, 30(3), 442-449.CrossrefGoogle Scholar

About the article


Published Online: 2012-01-24

Published in Print: 2010-04-01


Citation Information: Sport Science Review, ISSN (Online) 2069-7244, ISSN (Print) 2066-8732, DOI: https://doi.org/10.2478/v10237-011-0012-0.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jernej Rosker and Nejc Sarabon
Sport Science Review, 2010, Volume XIX, Number 5-6

Comments (0)

Please log in or register to comment.
Log in