Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Sport Science Review

The Journal of National Institute for Sport Research

3 Issues per year

Open Access
Online
ISSN
2069-7244
See all formats and pricing
More options …

Review of Methods for the Evaluation of Human Body Balance

Andrej Panjan / Nejc Sarabon
Published Online: 2012-01-24 | DOI: https://doi.org/10.2478/v10237-011-0036-5

Review of Methods for the Evaluation of Human Body Balance

The aim of this review paper is to thoroughly present all main tests used today in the field of body balance/equilibrium assessment and evaluation. After the introduction of some basic biomechanical and movement regulation concepts, a short revision of the metric characteristics that each test should contain is discussed. The latter encompasses validity, objectivity, repeatability, sensitivity, and some other elements that are of crucial importance for the practical use of every assessment. The major part of text is dedicated to the critical research based review of the body balance tests of different levels of technical and other complexity. Pros and cons of the presented assessment methods are discussed. First, the field motor tests and simple clinical tests are presented. Their primary use in school physical education, sports medicine, and rehabilitation is pointed out. Second, laboratory tests for the static balance assessment are described in details, including all the measured parameters, their informational value and limitations. And third, laboratory tests for the evaluation of dynamic balance are presented in an analogue way. In the discussion, we compare different tests through the scope of usefulness, economy, metric characteristics and informational value. The paper closes with a summary of the state-of-the-art on the field of balance and proposals for future research work.

Keywords: human body balance; static balance; dynamic balance; body balance tests

  • Alentorn-Geli, E., Myer, G. D., Silvers, H. J., Samitier, G., Romero, D., Lázaro-Haro, C., & Cugat, R. (2009). Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 2: a review of prevention programs aimed to modify risk factors and to reduce injury rates. Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA, 17(8), 859-879.Google Scholar

  • Arnold, B. L., De La Motte, S., Linens, S., & Ross, S. E. (2009). Ankle instability is associated with balance impairments: a meta-analysis. Medicine and Science in Sports and Exercise, 41(5), 1048-1062.CrossrefGoogle Scholar

  • Avdić, D., & Pecar, D. (2006). Significance of specificity of Tinetti B-POMA test and fall risk factor in third age of life. Bosnian Journal of Basic Medical Sciences/Udruženje Basičnih Mediciniskih Znanosti = Association of Basic Medical Sciences, 6(1), 50-57.Google Scholar

  • Baczkowicz, D., Szczegielniak, J., & Proszkowiec, M. (2008). Relations between postural stability, gait and falls in elderly persons-preliminary report. Ortopedia, Traumatologia, Rehabilitacja, 10(5), 478-485.Google Scholar

  • Barabas, A., Bretz, K., & Kaske, R. (1996). Stabilometry of the flamingo balance test. Presented at the 14 International Symposium on Biomechanics in Sports, Funchal, Madeira, Portugal.Google Scholar

  • Baratto, L., Morasso, P. G., Re, C., & Spada, G. (2002). A new look at posturo-graphic analysis in the clinical context: sway-density versus other parameterization techniques. Motor Control, 6(3), 246-270.Google Scholar

  • Bardy, D. G., Oullier, O., Bootsma, R. J., & Stofrregen, T. A. (2002). Dynamics of human postural transistions. Jurnal of Experimental Psychology: Human Perception and Performance, 28, 499-514.Google Scholar

  • Bauer, C., Rietsch, C., Gröger, I., & Gassmann, K. G. (2009). Mobility and safety for elderly (MoSi), a new intervention to improve mobility and gait in elderly people. Zeitschrift Für Gerontologie Und Geriatrie: Organ Der Deutschen Gesellschaft Für Gerontologie Und Geriatrie, 42(5), 360-364.Google Scholar

  • Bean, J. F., Vora, A., & Frontera, W. R. (2004). Benefits of exercise for communitydwelling older adults 1. Archives of physical medicine and rehabilitation, 85, 31-42.Google Scholar

  • Beauchamp, M. K., O'Hoski, S., Goldstein, R. S., & Brooks, D. (2010). Effect of pulmonary rehabilitation on balance in persons with chronic obstructive pulmonary disease. Archives of Physical Medicine and Rehabilitation, 91(9), 1460-1465.CrossrefGoogle Scholar

  • Behm, D. G., & Anderson, K. G. (2006). The role of instability with resistance training. Journal of Strength and Conditioning Research / National Strength & Conditioning Association, 20(3), 716-722.Google Scholar

  • Belaire-Franch, J., Contreras, D., & Tordera-Lledo, L. (2002). Assessing nonlinear structures in real exchange rates using recurrence plot strategies. Physica D: Nonlinear Phenomena, 171(4), 249-264.CrossrefGoogle Scholar

  • Benvenuti, F. (2001). Physiology of human balance. Advances in Neurology, 87, 41-51.Google Scholar

  • Berg balance scale assessment form [on-line]. Http://www.aahf.info/pdf/Berg_Balance_Scale.pdf

  • Berg, K. O., Wood-Dauphinee, S. L., Williams, J. I., & Maki, B. (1992). Measuring balance in the elderly: validation of an instrument. Canadian Journal of Public Health. Revue Canadienne De Santé Publique, 83 Suppl 2, S7-11.Google Scholar

  • Bergson, E., & Sataloff, R. T. (2005). Preoperative computerized dynamic posturography as a prognostic indicator of balance function in patients with acoustic neuroma. Ear, Nose, & Throat Journal, 84(3), 154-156.Google Scholar

  • Błaszczyk, J. W. (2008). Sway ratio - a new measure for quantifying postural stability. Acta Neurobiologiae Experimentalis, 68(1), 51-57.PubMedGoogle Scholar

  • Blum, L., & Korner-Bitensky, N. (2008). Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review. Physical Therapy, 88(5), 559-566.PubMedCrossrefGoogle Scholar

  • Bogle Thorbahn, L. D., & Newton, R. A. (1996). Use of the Berg Balance Test to predict falls in elderly persons. Physical Therapy, 76(6), 576-583.PubMedGoogle Scholar

  • Borg, F. G., & Laxaback, G. (2010). Entropy of balance-some recent results. Journal of Neuroengineering and Rehabilitation, 7, 38.CrossrefGoogle Scholar

  • Brown, C., Ross, S., Mynark, R., & Guskiewicz, K. (2004). Assessing functional ankle instability with joint position sense, time to stabilization, and electromyography. Journal of Sport Rehabilitation, 122-134.Google Scholar

  • Brown, C. N., & Mynark, R. (2007). Balance deficits in recreational athletes with chronic ankle instability. Journal of Athletic Training, 42(3), 367-373.Google Scholar

  • Cavanaugh, J. T., Mercer, V. S., & Stergiou, N. (2007). Approximate entropy detects the effect of a secondary cognitive task on postural control in healthy young adults: a methodological report. Journal of Neuroengineering and Rehabilitation, 4, 42.CrossrefGoogle Scholar

  • Collins, J. J., & De Luca, C. J. (1993). Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale, 95(2), 308-318.Google Scholar

  • Collins, J. J., & De Luca, C. J. (1995). The effects of visual input on open-loop and closed-loop postural control mechanisms. Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale, 103(1), 151-163.Google Scholar

  • Collins, J. J., De Luca, C. J., Burrows, A., & Lipsitz, L. A. (1995). Age-related changes in open-loop and closed-loop postural control mechanisms. Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale, 104(3), 480-492.Google Scholar

  • Cushing, S. L., Chia, R., James, A. L., Papsin, B. C., & Gordon, K. A. (2008). A test of static and dynamic balance function in children with cochlear implants: the vestibular olympics. Archives of Otolaryngology-Head & Neck Surgery, 134(1), 34-38.CrossrefGoogle Scholar

  • Dean, E. M., Griffiths, C. J., & Murray, A. (1986). Stability of the human body investigated by sway magnetometry. Journal of Medical Engineering & Technology, 10(3), 126-130.CrossrefGoogle Scholar

  • Deffeyes, J. E., Harbourne, R. T., DeJong, S. L., Kyvelidou, A., Stuberg, W. A., & Stergiou, N. (2009). Use of information entropy measures of sitting postural sway to quantify developmental delay in infants. Journal of Neuroengineering and Rehabilitation, 6, 34.CrossrefGoogle Scholar

  • Deitz, J. C., Kartin, D., & Kopp, K. (2007). Review of the Bruininks-Oseretsky Test of Motor Proficiency, Second Edition (BOT-2). Physical & Occupational Therapy in Pediatrics, 27(4), 87-102.Google Scholar

  • Donker, S. F., Roerdink, M., Greven, A. J., & Beek, P. J. (2007). Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control. Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale, 181(1), 1-11.CrossrefGoogle Scholar

  • Dornan, J., Fernie, G. R., & Holliday, P. J. (1978). Visual input: its importance in the control of postural sway. Archives of Physical Medicine and Rehabilitation, 59(12), 586-591.Google Scholar

  • Duarte, M., & Sternad, D. (2008). Complexity of human postural control in young and older adults during prolonged standing. Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale, 191(3), 265-276.CrossrefGoogle Scholar

  • Duncan, P. W., Weiner, D. K., Chandler, J., & Studenski, S. (1990). Functional reach: a new clinical measure of balance. The Journal of Gerontology, 45(6), M192.CrossrefGoogle Scholar

  • Findlay, G. F. G., Balain, B., Trivedi, J. M., & Jaffray, D. C. (2009). Does walking change the Romberg sign? European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 18(10), 1528-1531.CrossrefGoogle Scholar

  • Fitzgerald, B. (1996). A review of the sharpened Romberg test in diving medicine. SPUMS Journal / South Pacific Underwater Medicine Society, 26(3), 142-146.Google Scholar

  • Gatev, P., Thomas, S., Kepple, T., & Hallett, M. (1999). Feedforward ankle strategy of balance during quiet stance in adults. The Journal of Physiology, 514(3), 915-928.CrossrefGoogle Scholar

  • Giansanti, D., Maccioni, G., Cesinaro, S., Benvenuti, F., & Macellari, V. (2008). Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography. Medical Engineering & Physics, 30(3), 367-372.CrossrefGoogle Scholar

  • Goldie, P. A., Bach, T. M., & Evans, O. M. (1989). Force platform measures for evaluating postural control: reliability and validity. Archives of Physical Medicine and Rehabilitation, 70(7), 510-517.Google Scholar

  • Greene, B., O'Donovan, A., Romero-Ortuno, R., Cogan, L., Ni Scanaill, C., & Kenny, R. (2010). Quantitative falls risk assessment using the timed up and go test. IEEE Transactions on Bio-Medical Engineering. doi:10.1109/TBME.2010.2083659PubMedCrossrefGoogle Scholar

  • Hale, S. A., Hertel, J., & Olmsted-Kramer, L. C. (2007). The effect of a 4-week comprehensive rehabilitation program on postural control and lower extremity function in individuals with chronic ankle instability. The Journal of Orthopaedic and Sports Physical Therapy, 37(6), 303-311.Google Scholar

  • Haran, F. J., & Keshner, E. A. (2008). Sensory reweighting as a method of balance training for labyrinthine loss. Journal of Neurologic Physical Therapy: JNPT, 32(4), 186-191.CrossrefGoogle Scholar

  • Hellström, J. (2009). Competitive elite golf: a review of the relationships between playing results, technique and physique. Sports Medicine (Auckland, N. Z.), 39(9), 723-741.CrossrefGoogle Scholar

  • Herrington, L., Hatcher, J., Hatcher, A., & McNicholas, M. (2009). A comparison of Star Excursion Balance Test reach distances between ACL deficient patients and asymptomatic controls. The Knee, 16(2), 149-152. doi:10.1016/j.knee.2008.10.004PubMedCrossrefGoogle Scholar

  • Hrysomallis, C., McLaughlin, P., & Goodman, C. (2006). Relationship between static and dynamic balance tests among elite Australian Footballers. Journal of Science and Medicine in Sport / Sports Medicine Australia, 9(4), 288-291.CrossrefGoogle Scholar

  • Huang, T., & Wang, W. (2009). Comparison of three established measures of fear of falling in community-dwelling older adults: psychometric testing. International Journal of Nursing Studies, 46(10), 1313-1319.CrossrefGoogle Scholar

  • Hübscher, M., Zech, A., Pfeifer, K., Hänsel, F., Vogt, L., & Banzer, W. (2010). Neuromuscular training for sports injury prevention: a systematic review. Medicine and Science in Sports and Exercise, 42(3), 413-421.CrossrefGoogle Scholar

  • Jacobson, G. P., Newman, C. W., & Kartush, J. M. (1997). Handbook of balance function testing. Cengage Learning.Google Scholar

  • Jacono, M., Casadio, M., Morasso, P. G., & Sanguineti, V. (2004). The sway-den sity curve and the underlying postural stabilization process. Motor Control, 8(3), 292-311.Google Scholar

  • Jakobsen, M. D., Sundstrup, E., Krustrup, P., & Aagaard, P. (2010). The effect of recreational soccer training and running on postural balance in untrained men. European Journal of Applied Physiology. doi:10.1007/s00421-010-1669-2CrossrefGoogle Scholar

  • Johnston, R. B., Howard, M. E., Cawley, P. W., & Losse, G. M. (1998). Effect of lower extremity muscular fatigue on motor control performance. Medicine and Science in Sports and Exercise, 30(12), 1703-1707.CrossrefGoogle Scholar

  • Karinkanta, S., Piirtola, M., Sievänen, H., Uusi-Rasi, K., & Kannus, P. (2010). Physical therapy approaches to reduce fall and fracture risk among older adults. Nature Reviews. Endocrinology, 6(7), 396-407.CrossrefPubMedGoogle Scholar

  • Kaufman, K. R., Brey, R. H., Chou, L., Rabatin, A., Brown, A. W., & Basford, J. R. (2006). Comparison of subjective and objective measurements of balance disorders following traumatic brain injury. Medical Engineering & Physics, 28(3), 234-239.CrossrefGoogle Scholar

  • Kegelmeyer, D. A., Kloos, A. D., Thomas, K. M., & Kostyk, S. K. (2007). Reliability and Validity of the Tinetti Mobility Test for Individuals With Parkinson Disease. Physical Therapy, 87(10), 1369-1378.CrossrefPubMedGoogle Scholar

  • Khasnis, A., & Gokula, R. M. (2003). Romberg's test. Journal of Postgraduate Medicine, 49(2), 169-172.Google Scholar

  • Kinzey, S. J., & Armstrong, C. W. (1998). The reliability of the star-excursion test in assessing dynamic balance. The Journal of Orthopaedic and Sports Physical Therapy, 27(5), 356-360.Google Scholar

  • Kloos, A. D., Bello-Haas, V. D., Thome, R., Cassidy, J., Lewis, L., Cusma, T., & Mitsumoto, H. (2004). Interrater and intrarater reliability of the Tinetti Balance Test for individuals with amyotrophic lateral sclerosis. Journal of Neurologic Physical Therapy, 28(1), 12.CrossrefGoogle Scholar

  • Kloos, A. D., Kegelmeyer, D. A., Young, G. S., & Kostyk, S. K. (2010). Fall risk assessment using the Tinetti mobility test in individuals with Huntington's disease. Movement Disorders: Official Journal of the Movement Disorder Society. doi:10.1002/mds.23421CrossrefGoogle Scholar

  • Köpke, S., & Meyer, G. (2006). The Tinetti test: Babylon in geriatric assessment. Zeitschrift Für Gerontologie Und Geriatrie: Organ Der Deutschen Gesellschaft Für Gerontologie Und Geriatrie, 39(4), 288-291.Google Scholar

  • Kyvelidou, A., Harbourne, R. T., Shostrom, V. K., & Stergiou, N. (2010). Reliability of center of pressure measures for assessing the development of sitting postural control in infants with or at risk of cerebral palsy. Archives of Physical Medicine and Rehabilitation, 91(10), 1593-1601.CrossrefGoogle Scholar

  • Kyvelidou, A., Harbourne, R. T., Stuberg, W. A., Sun, J., & Stergiou, N. (2009). Reliability of center of pressure measures for assessing the development of sitting postural control. Archives of Physical Medicine and Rehabilitation, 90(7), 1176-1184.CrossrefGoogle Scholar

  • Lanska, D. J., & Goetz, C. G. (2000). Romberg's sign: development, adoption, and adaptation in the 19th century. Neurology, 55(8), 1201-1206.CrossrefGoogle Scholar

  • Le Clair, K., & Riach, C. (1996). Postural stability measures: what to measure and for how long. Clinical Biomechanics (Bristol, Avon), 11(3), 176-178.CrossrefGoogle Scholar

  • Le, T., & Kapoula, Z. (2008). Role of ocular convergence in the Romberg quotient. Gait & Posture, 27(3), 493-500.CrossrefGoogle Scholar

  • Lephart, S. M., Riemann, B. L., & Fu, F. H. (2000). Introduction to the sensorimotor system. Proprioception and neuromuscular control in joint stability, 162-169.Google Scholar

  • Levine, K. J. (1987). The Bruininks-Oseretsky test of motor proficiency: Usefulness for assessing writing disorders. Englewood Cliffs, NJ: Prentice Hall.Google Scholar

  • Lin, W., Liu, Y., Hsieh, C. C., & Lee, A. J. Y. (2009). Ankle eversion to inversion strength ratio and static balance control in the dominant and non-dominant limbs of young adults. Journal of Science and Medicine in Sport / Sports Medicine Australia, 12(1), 42-49.CrossrefGoogle Scholar

  • Longridge, N. S., & Mallinson, A. I. (2010). Clinical romberg testing does not detect vestibular disease. Otology & Neurotology: Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 31(5), 803-806.Google Scholar

  • Lord, S. R., Clark, R. D., & Webster, I. W. (1991). Postural stability and associated physiological factors in a population of aged persons. Journal of Gerontology, 46(3), M69-76.CrossrefGoogle Scholar

  • Lynch, S. M., Leahy, P., & Barker, S. P. (1998). Reliability of measurements obtained with a modified functional reach test in subjects with spinal cord injury. Physical Therapy, 78(2), 128.PubMedGoogle Scholar

  • Ma, J., Yao, Y., Ma, R., Li, J., Wang, T., Li, X., Han, W., et al. (2009). Effects of sleep deprivation on human postural control, subjective fatigue assessment and psychomotor performance. The Journal of International Medical Research, 37(5), 1311-1320.CrossrefGoogle Scholar

  • Mandelbrot, B. B., & Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM review, 10(4), 422-437.CrossrefGoogle Scholar

  • Martínez-Ramírez, A., Lecumberri, P., Gómez, M., & Izquierdo, M. (2010). Wavelet analysis based on time-frequency information discriminate chronic ankle instability. Clinical Biomechanics (Bristol, Avon), 25(3), 256-264.CrossrefGoogle Scholar

  • Mazoteras Munoz, V., Abellan van Kan, G., Cantet, C., Cortes, F., Ousset, P., Rolland, Y., & Vellas, B. (2010). Gait and balance impairments in Alzheimer disease patients. Alzheimer Disease and Associated Disorders, 24(1), 79-84.Google Scholar

  • McKeon, P. O., Ingersoll, C. D., Kerrigan, D. C., Saliba, E., Bennett, B. C., & Hertel, J. (2008). Balance training improves function and postural control in those with chronic ankle instability. Medicine and Science in Sports and Exercise, 40(10), 1810-1819.CrossrefGoogle Scholar

  • McMichael, K. A., Vander Bilt, J., Lavery, L., Rodriguez, E., & Ganguli, M. (2008). Simple balance and mobility tests can assess falls risk when cognition is impaired. Geriatric Nursing (New York, N. Y.), 29(5), 311-323.CrossrefGoogle Scholar

  • Michel-Pellegrino, V., Hewson, D. J., Drieux, M., & Duchene, J. (2007). Evaluation of the risk of falling in institution-dwelling elderly: clinical tests versus biomechanical analysis of stepping-up. Conference Proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2007, 6122-6125.Google Scholar

  • Mizuta, K., Tokita, T., Ito, Y., Aoki, M., & Kuze, B. (2009). Studies on the largest Lyapunov exponents of the standing posture in patients with unilateral vestibular dysfunction. Nippon Jibiinkoka Gakkai Kaiho, 112(12), 791-800.PubMedGoogle Scholar

  • Mockford, K. A., Mazari, F. A. K., Jordan, A. R., Vanicek, N., Chetter, I. C., & Coughlin, P. A. (2010). Computerized Dynamic Posturography in the Objective Assessment of Balance in Patients with Intermittent Claudication. Annals of Vascular Surgery. doi:10.1016/j.avsg.2010.07.021CrossrefGoogle Scholar

  • Monsell, E. M., Furman, J. M., Herdman, S. J., Konrad, H. R., & Shepard, N. T. (1997). Computerized dynamic platform posturography. Otolaryngology-Head and Neck Surgery: Official Journal of American Academy of Otolaryngology-Head and Neck Surgery, 117(4), 394-398.Google Scholar

  • Morasso, P. G., & Schieppati, M. (1999). Can muscle stiffness alone stabilize upright standing? Journal of neurophysiology, 82(3), 1622.Google Scholar

  • Mourey, F., Camus, A., & Pfitzenmeyer, P. (2000). Posture and aging. Current fundamental studies and management concepts. Presse Médicale (Paris, France: 1983), 29(6), 340-344.Google Scholar

  • Munn, J., Sullivan, S. J., & Schneiders, A. G. (2010). Evidence of sensorimotor deficits in functional ankle instability: a systematic review with meta-analysis. Journal of Science and Medicine in Sport / Sports Medicine Australia, 13(1), 2-12.CrossrefGoogle Scholar

  • de Noronha, M., Refshauge, K. M., Herbert, R. D., Kilbreath, S. L., & Hertel, J. (2006). Do voluntary strength, proprioception, range of motion, or postural sway predict occurrence of lateral ankle sprain? British Journal of Sports Medicine, 40(10), 824-828.CrossrefGoogle Scholar

  • Ortuno-Cortés, M. A., Martín-Sanz, E., & Barona-de Guzmán, R. (2008). Static posturography versus clinical tests in elderly people with vestibular pathology. Acta Otorrinolaringológica Espanola, 59(7), 334-340.Google Scholar

  • Ozunlu, N., Basari, G. O., & Baltaci, G. (2010). The effects of carrying extra weight on ankle stability in adolescent basketball players. Foot (Edinburgh, Scotland), 20(2-3), 55-60.Google Scholar

  • Peng, C. K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos (Woodbury, N. Y.), 5(1), 82-87.PubMedCrossrefGoogle Scholar

  • Pérennou, D., Decavel, P., Manckoundia, P., Penven, Y., Mourey, F., Launay, F., Pfitzenmeyer, P., et al. (2005). Evaluation of balance in neurologic and geriatric disorders. Annales De Réadaptation Et De Médecine Physique: Revue Scientifique De La Société Française De Rééducation Fonctionnelle De Réadaptation Et De Médecine Physique, 48(6), 317-335.Google Scholar

  • Plisky, P. J., Rauh, M. J., Kaminski, T. W., & Underwood, F. B. (2006). Star Excursion Balance Test as a predictor of lower extremity injury in high school basketball players. The Journal of Orthopaedic and Sports Physical Therapy, 36(12), 911-919.Google Scholar

  • Rabbitt, P. M., Scott, M., Thacker, N., Lowe, C., Horan, M., Pendleton, N., Hutchinson, D., et al. (2006). Balance marks cognitive changes in old age because it reflects global brain atrophy and cerebro-arterial blood-flow. Neuropsychologia, 44(10), 1978-1983.CrossrefPubMedGoogle Scholar

  • Raymakers, J. A., Samson, M. M., & Verhaar, H. J. J. (2005). The assessment of body sway and the choice of the stability parameter(s). Gait & Posture, 21(1), 48-58.CrossrefGoogle Scholar

  • Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology. Heart and Circulatory Physiology, 278(6), H2039-2049.Google Scholar

  • Riley, M. A., Balasubramaniam, R., & Turvey, M. T. (1999). Recurrence quantification analysis of postural fluctuations. Gait & Posture, 9(1), 65-78.CrossrefGoogle Scholar

  • Rosenstein, M. T., Collins, J. J., De Luca, C. J., & Michael, C. (1993). A practical method for calculating largest Lyapunov exponents from small data sets. PHYSICA D, 65, 117-134.CrossrefGoogle Scholar

  • Ross, S., & Guskiewicz, K. (2003). Time to stabilization: a method for analyzing dynamic postural stability. Athletic Therapy Today, 8(3), 37-39.Google Scholar

  • Ross, S., & Guskiewicz, K. (2004). Examination of static and dynamic postural stability in individuals with functionally stable and unstable ankles. Clinical Journal of Sport Medicine: Official Journal of the Canadian Academy of Sport Medicine, 14(6), 332-338.CrossrefGoogle Scholar

  • Ross, S. E., Guskiewicz, K. M., Gross, M. T., & Yu, B. (2009). Balance measures for discriminating between functionally unstable and stable ankles. Medicine and Science in Sports and Exercise, 41(2), 399-407.CrossrefGoogle Scholar

  • Sabin, M. J., Ebersole, K. T., Martindale, A. R., Price, J. W., & Broglio, S. P. (2010). Balance performance in male and female collegiate basketball athletes: influence of testing surface. Journal of Strength and Conditioning Research / National Strength & Conditioning Association, 24(8), 2073-2078. doi:10.1519/JSC.0b013e3181ddae13CrossrefGoogle Scholar

  • Santarcangelo, E. L., Scattina, E., Carli, G., Balocchi, R., Macerata, A., & Manzoni, D. (2009). Modulation of the postural effects of cognitive load by hypnotizability. Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale, 194(2), 323-328.CrossrefGoogle Scholar

  • Sarabon, N., Mlaker, B., & Markovic, G. (2010). A novel tool for the assessment of dynamic balance in healthy individuals. Gait & Posture, 31(2), 261-264.CrossrefGoogle Scholar

  • Šarabon, N., & Omejec, G. (2007). A Novel Testing Tool for Balance in Sports and Rehabilitation (Vol. 16). Presented at the 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007, Berlin, Heidelberg: Springer Berlin Heidelberg.Google Scholar

  • Sarabon, N., Rosker, J., Loefler, S., & Kern, H. (2010). Sensitivity of body sway parameters during quiet standing to manipulation of support surface size. Journal of Sports Science and Medicine, 9, 431-438.Google Scholar

  • Schmit, J. M., Regis, D. I., & Riley, M. A. (2005). Dynamic patterns of postural sway in ballet dancers and track athletes. Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale, 163(3), 370-378.CrossrefGoogle Scholar

  • Schumacher, J., Pientka, L., & Thiem, U. (2006). Age-related differences in functional tests to assess the risk of falling in patients with knee pain. Zeitschrift Für Gerontologie Und Geriatrie: Organ Der Deutschen Gesellschaft Für Gerontologie Und Geriatrie, 39(4), 283-287.Google Scholar

  • Schwesig, R., Kluttig, A., Kriebel, K., Becker, S., & Leuchte, S. (2009). Prospective comparison of assessments to evaluate fall risk in a nursing home population. Zeitschrift Für Gerontologie Und Geriatrie: Organ Der Deutschen Gesellschaft Für Gerontologie Und Geriatrie, 42(6), 473-478.Google Scholar

  • Siqueira Rodrigues, B. G. D., Ali Cader, S., Bento Torres, N. V. O., Oliveira, E. M. D., & Martin Dantas, E. H. (2010). Pilates method in personal autonomy, static balance and quality of life of elderly females. Journal of Bodywork and Movement Therapies, 14(2), 195-202.Google Scholar

  • Sofianidis, G., Hatzitaki, V., Douka, S., & Grouios, G. (2009). Effect of a 10-week traditional dance program on static and dynamic balance control in elderly adults. Journal of Aging and Physical Activity, 17(2), 167-180.Google Scholar

  • Stins, J. F., Michielsen, M. E., Roerdink, M., & Beek, P. J. (2009). Sway regularity reflects attentional involvement in postural control: effects of expertise, vision and cognition. Gait & Posture, 30(1), 106-109.CrossrefGoogle Scholar

  • Sundstrup, E., Jakobsen, M. D., Andersen, J. L., Randers, M. B., Petersen, J., Suetta, C., Aagaard, P., et al. (2010). Muscle function and postural balance in lifelong trained male footballers compared with sedentary elderly men and youngsters. Scandinavian Journal of Medicine & Science in Sports, 20 Suppl 1, 90-97.CrossrefGoogle Scholar

  • Tinetti test assessment form [on-line]. Htpp://www.bhps.org.uk/falls/documents/TinettiBalanceAssessment.pdf

  • Tsigilis, N., Douda, H., & Tokmakidis, S. P. (2002). Test-retest reliability of the Eurofit test battery administered to university students. Perceptual and Motor Skills, 95(3 Pt 2), 1295-1300.CrossrefGoogle Scholar

  • Tsigilis, N., & Theodosiou, A. (2008). The influence of multiple administration of a psychomotor test on performance and learning. Journal of Strength and Conditioning Research/National Strength & Conditioning Association, 22(6), 1964-1968.CrossrefGoogle Scholar

  • Tyson, S. F., & Connell, L. A. (2009). How to measure balance in clinical practice. A systematic review of the psychometrics and clinical utility of measures of balance activity for neurological conditions. Clinical Rehabilitation, 23(9), 824-840.PubMedCrossrefGoogle Scholar

  • Vanicek, N., Strike, S., McNaughton, L., & Polman, R. (2009). Postural responses to dynamic perturbations in amputee fallers versus nonfallers: a comparative study with able-bodied subjects. Archives of Physical Medicine and Rehabilitation, 90(6), 1018-1025.CrossrefGoogle Scholar

  • Webber, C. L., & Zbilut, J. P. (1994). Dynamical assessment of physiological systems and states using recurrence plot strategies. Journal of Applied Physiology (Bethesda, Md.: 1985), 76(2), 965-973.Google Scholar

  • Webster, K. A., & Gribble, P. A. (2010). Functional rehabilitation interventions for chronic ankle instability: a systematic review. Journal of Sport Rehabilitation, 19(1), 98-114.Google Scholar

  • Wernick-Robinson, M., Krebs, D. E., & Giorgetti, M. M. (1999). Functional reach: does it really measure dynamic balance? Archives of physical medicine and rehabilitation, 80(3), 262-269.CrossrefGoogle Scholar

  • Whipple, R., Wolfson, L., Derby, C., Singh, D., & Tobin, J. (1993). Altered sensory function and balance in older persons. Journal of Gerontology, 48 Spec No, 71-76.CrossrefGoogle Scholar

  • Wikstrom, E. A., Tillman, M. D., Smith, A. N., & Borsa, P. A. (2005). A new force-plate technology measure of dynamic postural stability: the dynamic postural stability index. Journal of Athletic Training, 40(4), 305-309.Google Scholar

  • Winter, D. A., Patla, A. E., Prince, F., Ishac, M., & Gielo-Perczak, K. (1998). Stiffness control of balance in quiet standing. Journal of Neurophysiology, 80(3), 1211-1221.Google Scholar

  • Winter, D. A. (1995). Human balance and posture control during standing and walking. Gait & Posture, 3(4), 193-214.CrossrefGoogle Scholar

  • Winter, D. A. (1995). Human balance and posture control during standing and walking. Gait & Posture, 3(4), 192-214.Google Scholar

  • Winter, D. A., Patla, A. E., Ishac, M., & Gage, W. H. (2003). Motor mechanisms of balance during quiet standing. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 13(1), 49-56.CrossrefGoogle Scholar

  • Yelnik, A., & Bonan, I. (2008). Clinical tools for assessing balance disorders. Neurophysiologie Clinique = Clinical Neurophysiology, 38(6), 439-445.PubMedCrossrefGoogle Scholar

  • Zatsiorsky, V. M., & Duarte, M. (1999). Instant equilibrium point and its migration in standing tasks: rambling and trembling components of the stabilogram. Motor Control, 3(1), 28-38.PubMedGoogle Scholar

  • Zatsiorsky, V. M., & Duarte, M. (2000). Rambling and trembling in quiet standing. Motor Control, 4(2), 185-200.PubMedGoogle Scholar

About the article


Published Online: 2012-01-24

Published in Print: 2010-12-01


Citation Information: Sport Science Review, ISSN (Online) 2069-7244, ISSN (Print) 2066-8732, DOI: https://doi.org/10.2478/v10237-011-0036-5.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Cunguang Lou, Shuo Wang, Tie Liang, Chenyao Pang, Lei Huang, Mingtao Run, and Xiuling Liu
Materials, 2017, Volume 10, Number 9, Page 1068
[2]
Barbu Braun, Mihaela Baritz, G. Oancea, and M.V. Drăgoi
MATEC Web of Conferences, 2017, Volume 94, Page 01002

Comments (0)

Please log in or register to comment.
Log in