Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Sport Science Review

The Journal of National Institute for Sport Research

3 Issues per year

Open Access
Online
ISSN
2069-7244
See all formats and pricing
More options …

Cryotherapy and its Correlates to Functional Performance. A Brief Preview

Márcio Luís Pinto Domingues
  • Corresponding author
  • Faculty of Sports Science, University of Coimbra, Portugal
  • 61 Rua Nova Horta-Velha 3750-862 Borralha Portugal Phone: (+351) 910 973 39 06
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-08-28 | DOI: https://doi.org/10.2478/ssr-2013-0012

Abstract

Objective: To search the English language literature for original research addressing the effect of cryotherapy on motor performance and recovery. Data Sources: We searched MEDLINE, the Physiotherapy Evidence Database, SPORT Discus, Pubmed, and the Cochrane Reviews database, from 1976 to 2009 to identify randomized clinical trials of cryotherapy, systematic reviews, original articles and methods of cryotherapy. Key words used were cryotherapy, return to participation, cold treatment, ice, injury. Data Synthesis: Brief review including assessment of cryotherapy as a tool of performance and a recovery method. Conclusions: Most studies suggest that a short rewarming time would be beneficial (a couple minutes), which is very reasonable in sports. Also, cooling techniques differ in its result accordingly to the procedures and objectives used. Finally, the type of tissue cooled plays a large role (ie. Joint vs. Muscle).

Keywords : cryotherapy; performance; cold

  • Amman, M., & Dempsey, J. (2008). Locomotor fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. JPhysiol, 586, 161-173.Google Scholar

  • Amusa, L., & Toriola, A. (2003). Leg power and physical performance measures of top national track athletes. Journal of Exercise Science and Fitness, 1(1), 61-67.Google Scholar

  • Armstrong, L., Crago, A., Adams, R., Roberts, W., & Maresh, C. (1996). Wholebody cooling of hyperthermic runners: comparison of two field therapies. Am J Emerg Med, 14(4), 355-358.CrossrefGoogle Scholar

  • Arngrïmsson, S., Petitt, D., Stueck, M., Jorgensen, D., & Cureton, K. (2003). Cooling vest worn during active warm-up improves 5-km run performance in the heat. J Appl Physiol, 96, 1867-74.PubMedGoogle Scholar

  • Atnip, B., & Mccrory, J. (2004). The effect of cryotherapy on three dimensional ankle kinematics during a sidestep cutting maneuver. J of Sports Sci and Med.3, 83-90.Google Scholar

  • Barnett, A. (2006). Using recovery modalities between training sessions in elite athletes: does it help? Sports Med, 36(9), 781-96.PubMedCrossrefGoogle Scholar

  • Bakhtiary, A., Safavi-Farokhi, Z., & Aminian-Far, A. (2007). Influence of vibration on delayed onset of muscle soreness following eccentric exercise. BritishJournal of Sports Medicine, 41, 145-148.CrossrefGoogle Scholar

  • Barnes, W., & Larson, M. (1985). Effects of localized hyper- and hypothermia on maximal isometric grip strength. Am J Phys Med, 64, 305-314.PubMedGoogle Scholar

  • Belitsky, R., Odam, S., & Hubley-Kozey, C. (1987). Evaluation of the effectiveness of wet ice, dry ice, and cryogenic packs in reducing skin temperature. PhysTher, 67, 1080-1084.Google Scholar

  • Berg, U., & Ekblom, B. (1979). Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta PhysiologicaScandinavica, 107, 33-37.Google Scholar

  • Bleakley, C., McDonough, S., & MacAuley, D. (2006). Cryotherapy for acute ankle sprains: a randomised controlled study of two different icing protocols. Br. J. Sports Med, 40, 700 - 705.Google Scholar

  • Bompa, T. (1999). Periodization. Theory and methodology of training (4th Ed.). Champaign, IL: Human Kinetics.Google Scholar

  • Buchheit, M., Peiffer, J., Abbiss, C., & Laursen, P. (2009). Effect of cold water immersion on postexercise parasympathetic reactivation. Am J Physiol HeartCirc Physiol, 296, H421-H427.Google Scholar

  • Burke, D., MacNeil, S., Holt, L., Mackinnon, N., & Rasmussen, R. (2000). The Effect of Hot or Cold Water Immersion on Isometric Strength Training. Journalof Strength & Conditioning Research, 14(1), 21-25.Google Scholar

  • Burke, D., Holt, L., Rasmussen R., MacKinnon, N., Vossen, J., & Pelham, T. (2001). Effects of Hot or Cold Water Immersion and Modified Proprioceptive Neuromuscular Facilitation Flexibility Exercise on Hamstring Length. JAthl Train, 36(1), 16-19.PubMedGoogle Scholar

  • Carman K., & Knight K. (1992). Habituation to cold-pain during repeated cryo kinetic sessions. J Athl Train, 27, 223-230.Google Scholar

  • Castle, P., Macdonald, A., Philp, A., Webborn, A., Watt, P., & Maxwell, N. (2006). Precooling leg muscle improves intermittent sprint exercise performance in hot, humid conditions. J Appl Physiol, 100(4), 1377-84.PubMedGoogle Scholar

  • Catlaw, K., Arnold, B., & Perrin, D. (1996). Effect of cold treatment on concentric and eccentric torque-velocity relationship of the quadriceps femoris. IsokineticsExerc Sci, 5, 157-160.Google Scholar

  • Cheung, K., Hume, P., & Maxwell, L. (2003). Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med, 33(2), 145-64.PubMedCrossrefGoogle Scholar

  • Clements, J., Casa, D., Knight, J., McClung, J., Blake, A., Meenen, P., Gilmer, A., & CaldwellIce, K. (2002). Ice-water immersion and cold-water immersion provide similar cooling rates in runners with exercise-induced hyperthermia. J Athl Train, 37(2),146-150.PubMedGoogle Scholar

  • Cochrane, D. (2004). Alternating hot and cold water immersion for athlete recovery: a review. Physical Therapy in Sport, 5(1), 26-32.CrossrefGoogle Scholar

  • Coffey, V. (2002). Effect of recovery modality on 4-hour repeated treadmill running performance and changes in physiological variables. Journal of Scienceand Medicine in Sport, 7(1), 1-10.Google Scholar

  • Coppin, E., Livingstone, S., & Kuehn, L. (1978). Effects of handgrip strength during arm immersion in a 10 degree water bath. Aviat Space Environ, 49, 1322-1326.Google Scholar

  • Cornwall, M. (1994). Effect of temperature on muscle force and rate of muscle force production in men and women. Journal of Orthopedic and Sports PhysicalTherapy, 20(2), 74-80.Google Scholar

  • Cross, K., Wilson, R., & Perrin, D. (1996). Functional performance following an ice immersion to the lower extremity. J Athl Train, 31(2), 113-116.PubMedGoogle Scholar

  • Crowley, G., Garg, A., Lohn, M., Van Someren, N., & Wade, A. (1991). Effects of cooling the legs on performance in a standard Wingate anaerobic power test. Br J Sports Med, 25(4), 200-3.CrossrefGoogle Scholar

  • Davies, C., & Young, K. (1985). Effect of the temperature on the contractile properties and muscle power of triceps surae in humans. J Appl Physiol, 55, 191-19.Google Scholar

  • Douris, P., Mckenna, R., Madigan, K., Cesarski, B., Costiera, R., & Lu, M. (2003).Google Scholar

  • Recovery of Maximal Isometric Grip Strength Following Cold Immersion. Journal of Strength & Conditioning Research, 17(3), 509-513.Google Scholar

  • Dover, G., & Powers, M. (2004). Cryotherapy does not impair shoulder joint position sense. Arch Phys Med Rehabil, 85(8), 1241-6.PubMedCrossrefGoogle Scholar

  • Drinkwater, E. (2008). Effects of peripheral cooling on characteristics of local muscle. Med Sport Sci, 53, 74-88.PubMedCrossrefGoogle Scholar

  • Duck, M., Kaminski, M., Horodyski, M., & Bauer, J. (2000). The effects of ice and compression to the ankle joint on two measures of functional performance. J Athl Train, 35(2), S.Google Scholar

  • Duffield, R., Dawson, B., Bishop, D., Fitzsimons, M., & Lawrence, S. (2003). Effect of wearing an ice cooling jacket on repeat sprint performance in warm/humid conditions. British Journal of Sports Medicine, 37, 164-169.PubMedCrossrefGoogle Scholar

  • Duffield, R. (2008). Cooling interventions for the protection and recovery of exercise performance from exercise-induced heat stress. Med Sport Sci, 53, 89-103.PubMedCrossrefGoogle Scholar

  • Enwemeka, C., Allen, C., Avila, P., Bina, J., Konrade, J., & Munns, S. (2002). Soft tissue thermodynamics before, during, and after cold pack therapy. Med SciSports Exerc, 34, 45-50.CrossrefGoogle Scholar

  • Evans, T., Ingersoll, C., Knight, K., & Worrell, T. (1995). Agility following the application of cold therapy. J Athl Train, 30(3), 231-234.PubMedGoogle Scholar

  • Ferretti, G., Ishii, M., Moia, C., & Cerretelli, P. (1992). Effects of temperature on the maximal instantaneous muscle power of humans. European Journal ofApplied Physiology, 64, 112-116. CrossrefGoogle Scholar

  • Fischer, J., Van Lunen, B., Branch, J., & Pirone, J. (2009). Functional performance following an ice bag application to the hamstrings. J Strength Cond Res, 23(1), 44-50.PubMedCrossrefGoogle Scholar

  • Gardner, C., Aiken, S., Robinson, W., Condra, V., & McGinnis, S. (2000). The effects of ankle cryotherapy on balance strategy selection in bilateral stance. J Athl Train, 35(2), S.Google Scholar

  • Gatti, J., Myers, J., & Lephart, S. (2000). Shoulder function following a cryotherapy modality application. J Athl Train, 35(2), S.Google Scholar

  • Geisbrecht, G., Wu, M., White, M., Johnston, C., & Bristow, G; (1995). Isolated effects of peripheral arm and central body cooling on arm performance. Aviat Space Environ Med, 66(10), 968-75.Google Scholar

  • Grant, A. (1964). Massage with ice (cryokinetics) in treatment of painful conditions of the musculoskeletal system. Arch Phys Med Rehabil, 45, 233-238.PubMedGoogle Scholar

  • Halar, E., DeLisa, J., & Brozovich, F. (1980). Nerve conduction velocity: relationship of skin subcutaneous and intramuscular temperatures. Arch Phys MedRehabil, 61, 199-203.Google Scholar

  • Hargreaves, M. (2008). Fatigue mechanisms determining exercise performance: integrative physiology is systems biology. J Appl Physiol, 104, 1541-1542.PubMedCrossrefGoogle Scholar

  • Hatzel, B., & Kaminski, T. (2000). The effects of ice immersion on concentric and eccentric isokinetic muscle performance in the ankle. Isokinetic ExerciseScience, 8(2), 103-107.Google Scholar

  • Hayden, C. (1964). Cryokinetics in an early treatment program. J Am Phys TherAssoc, 44, 990-993.Google Scholar

  • Hopkins, J., Ingersoll, C., Krause, B., Edwards, J., & Cordova, M. (2001). Effect of knee joint effusion on quadriceps and soleus motoneuron pool excitability. Medicine and Science in Sports and Exercise, 33, 123-126.PubMedCrossrefGoogle Scholar

  • Hopkins, J., & Adolp, J. (2003). Effects of joint cryotherapy on lower chain function. Clinical Kinesiology, 57(3), 42-48.Google Scholar

  • Hopkins, J., Hunter, I., & McLoda, T. (2006). Effects of ankle joint cooling on peroneal short latency response. Journal of Sports Science and Medicine, 5, 333-339.Google Scholar

  • Hopkins, J., & Stencil, R. (2002). Ankle joint cryotherapy facilitates soleus function. Journal of Orthopedic and Sports Physical Therapy, 32, 622-627.Google Scholar

  • Hopper, D., Whittington, D., & Davies, J. (1997). Does ice immersion influence ankle joint position sense? Physiother Res Int, 2(4), 223-36.PubMedCrossrefGoogle Scholar

  • Howard, R., Kraemer, W., Stanley, D., Armstrong, L., & Maresh, C. (1994). The effects of cold immersion on muscle strength. Journal of Strength & ConditioningResearch, 8(3), 129-133.Google Scholar

  • Howastson, G., & van Someren, K. (2008). The prevention and treatment of exercise-induced muscle damage. Sports Med, 3(6), 483-503.CrossrefGoogle Scholar

  • Hubbard, T., Aronson, S., & Denegar, C. (2004). Does Cryotherapy Hasten Return to Participation? A Systematic Review. J Athl Train, 39(1), 88-94.PubMedGoogle Scholar

  • Ingersoll, C., Knight, K., & Merrick, M. (1992). Sensory perception of the foot and ankle following therapeutic applications of heat and cold. J Athl Train, 2, 231-234.Google Scholar

  • Ingram, J., Dawson, B., Goodman, C., Wallman, K., & Beilby, J. (2009). Effect of water immersion methods on post-exercise recovery from simulated team sport exercise. J Sci Med Sport, 12(3), 417-21.CrossrefPubMedGoogle Scholar

  • Johnson, D., & Bahamonde, R. (1996). Power output estimate in university athletes. Journal of Strength and Conditioning Research, 10(3), 161-166.Google Scholar

  • Kanlayanaphotporn, R., & Janwantanakul, P. (2005). Comparison of skin surface temperature during the application of various cryotherapy modalities. ArchPhys Med Rehabil, 86, 1411-1415.CrossrefGoogle Scholar

  • Kimura, I., Thompson, G., & Gulick, D. (1997). The effect of cryotherapy on eccentric plantar flexion peak torque and endurance. J Athl Train, 32(2), 124-126.PubMedGoogle Scholar

  • Kinzey, S., Cordova, M., Gallen, K., Smith, J., & Moore, J. (2000). The effects of cryotherapy on ground reaction forces produced during functional tasks. Journal of Sport Rehabilitation, 9, 3-14.Google Scholar

  • Kisner, C., & Colby, L. (2007). Therapeutic exercise. Foundations and techniques (5th Ed.).Google Scholar

  • FA Davis Company. Knight, K. (1979). Ankle rehabilitation with cryotherapy. Phys Sportsmed, 7,133.Google Scholar

  • Knight, K. (1995). Cryotherapy: Theory, Technique, and Physiology (pp. 149-169). Chattanooga, TN: Chattanooga Corporation.Google Scholar

  • Krause, A., Hopkins, J., Ingersoll, C., Cordova, M., & Edwards, J. (2000). The relationship of ankle temperature during cooling and rewarming to the human soleus H reflex. Journal of Sport Rehabilitation, 9, 253-262.Google Scholar

  • Kowal, M. (1983). Review of physiological effects of cryotherapy. J Orthop SportsPhys Ther, 5, 66-73.Google Scholar

  • Krause, B., Hopkins, J., & Ingersoll, C. (2000). Effects of cooling and rewarming on the human soleus Hoffman reflex. Med Sci Sports Exerc, 32.Google Scholar

  • LaRiviere, J., & Osternig, L. (1994). The effects of ice immersion of joint position sense. Journal of Sport Rehabilitation, 3, 58-67.Google Scholar

  • LeBlanc, J. (1956). Impairment of Manual Dexterity in the Cold. J Appl Physiol,9, 62-64.PubMedGoogle Scholar

  • Lee, J., Warren, M., & Mason, S. (1978). Effects of ice on nerve conduction velocity. Physiotherapy, 64, 2-6.PubMedGoogle Scholar

  • Lievens, P. (1986). The use of cryotherapy in sport injuries. Sports Medicine, 3, 398.Google Scholar

  • Lowdon, B., & Moor, R., (1975). Determinants and nature of intramuscular temperature changes during cold therapy. Am J Phys Med, 54(5), 223-233.PubMedGoogle Scholar

  • Marino, F. (2002). Methods, advantages, and limitations of body cooling for exercise performance. British Journal of Sports Medicine, 36, 89-94.CrossrefPubMedGoogle Scholar

  • Marsh, D., & Sleivert, G. (1999). Effect of precooling on high intensity cycling performance. British Journal of Sports Medicine, 33(6), 393-397.PubMedCrossrefGoogle Scholar

  • Mattacola, C., & Perrin, D. (1993). Effects of cold water application on isokinetic strength of the planter flexors. Isokinetic Exercise Science, 3, 152-159.Google Scholar

  • McAuley, D. (2001). Ice Therapy: how good is the evidence? Int J Sports Med, 22(5), 379-84. Google Scholar

  • McDermott, B., Casa, D., Ganio, M., Lopez, R., Yeargin, S., Armstrong, L., & Maresh, C. (2009). Acute Whole-Body Cooling for Exercise-Induced Hyperthermia: A Systematic Review. J Athl Train, 44(1), 84-93.PubMedGoogle Scholar

  • McGowin, H. (1967). Effects of cold application on maximal isometric contraction. Phys Ther Rev, 47, 185-192.Google Scholar

  • McKenna, M., & Hargreaves, M. (2008). Resolving fatigue mechanisms determining exercise performance: integrative physiology at its finest! J Appl Physiol,104, 286-287.PubMedGoogle Scholar

  • McMaster, W. (1982). Cryotherapy. Phys Sportsmed, 10, 112-119.Google Scholar

  • McMaster, W. (1977). A literary review on ice therapy in injury. Am J Sport Med, 2, 124-126.CrossrefGoogle Scholar

  • Mecomber, S., & Hermnan, R. (1971). Effects of local hypothermia on reflex and voluntary activity. Phys Ther, 51, 271-282.PubMedGoogle Scholar

  • Meeusen, R., & Lievens, P. (1986). The use of cryotherapy in sports injuries. Sports Medicine, 3(6), 398-414.CrossrefGoogle Scholar

  • Merrick, M., Jutte, L., & Smith, M. (2003). Cold modalities with different thermodynamic properties produce different surface and intramuscular temperatures. J Athl Train, 38, 28-33.PubMedGoogle Scholar

  • Miniello, S., Dover, G., Powers, M., Tillman, M., & Wikstrom, E. (2005). Lower leg cold immersion does not impair dynamic stability in healthy women. Journal of Sport Rehabilitation, 14(3), 234-247.Google Scholar

  • Minton, J. (1993). A comparison of thermotherapy and cryotherapy in enhancing supine, extended-leg, hip flexion. J Athl Train, 28(2), 172-176.PubMedGoogle Scholar

  • Myrer, J., Myrer, K., Measom, G., Fellingham, G., & Evers, S. (2001) Muscle temperature is affected by overlying adipose when cryotherapy is administered. J Athl Train, 36(1), 32-36.PubMedGoogle Scholar

  • Myrer, J., Measom, G., & Fellingham, G. (2000). Exercise after cryotherapy greatly enhances intramuscular rewarming. J Athl Train, 35(4), 412-416.PubMedGoogle Scholar

  • Noakes, T. (2000). Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand J Med SciSports, 10, 123-145.CrossrefGoogle Scholar

  • Oksa, J., Rintamaki, H., & Rissanen, S. (1997). Muscle performance and electromyogram activity of the lower leg muscles with different levels of cold exposure. Eur J Appl Physiol Occup Physiol, 75(6), 484-490.CrossrefPubMedGoogle Scholar

  • Olschewski, H., & Bruck, K. (1988). Thermoregulatory, cardiovascular, and muscular factors related to exercise after precooling. J Appl Physiol, 64(2), 803-811.PubMedGoogle Scholar

  • Ozmun, J., Thieme, H., Ingersoll, C., Knight, K., & Ozmun, J. (1996). Cooling does not affect knee proprioception. J Athl Train, 31, 8-11.PubMedGoogle Scholar

  • Paddon-Jones, D. (1997). Effect of cryotherapy on muscle soreness and strength following eccentric exercise. International Journal of Sports Medicine, 18, 588-593.CrossrefGoogle Scholar

  • Palmieri, R., Garrison, J., Leonard, J., Edwards, J., Weltman, A., & Ingersoll, C. (2006). Peripheral ankle cooling and core body temperature. J Athl Train,41(2), 185-8.PubMedGoogle Scholar

  • Patterson, S., Udermann, B., Doberstein, S., & Reineke, D. (2008). The effects of cold whirlpool on power, speed, agility, and range of motion. Journal of SportsScience and Medicine, 7, 387-394.Google Scholar

  • Peiffer, J., Abbiss, C., Watson, G., Nosaka, K., & Laursen P. (2008). Effect of cold water immersion on repeated 1-km cycling performance in the heat. Journal of Science and Medicine in Sport.Google Scholar

  • Piedrahita, H., Oksa, J., Rintamäki, H., & Malm, C. (2009). Effect of local leg cooling on upper limb trajectories and muscle function and whole body dynamic balance. Eur J Appl Physiol, 105(3), 429-38.CrossrefPubMedGoogle Scholar

  • Pietrosimone, B., & Ingersoll, C. (2009). Focal knee joint cooling increases the quadriceps central activation ratio. Journal of Sports Sciences (n.d.).Google Scholar

  • Power, S., & Howley, E. (2004). Exercise Physiology. Theory and application to fitnessand performance (3rd Ed.). McGraw Hill.Google Scholar

  • Prentice, J. (1990). Therapeutic modalities. In Sports Medicine (2nd ed.). St. Louis: Times Mirror/Mosby College. Quod, M., Martin, D., Laursen, P., Gardner, A., Halson, S., Marino, F., Tate, M., Mainwaring, D., Gore, C., & Hahn, A. (2008). Practical precooling: Effect on cycling time trial performance in warm conditions. Journal of Sports Sciences (n.d.).Google Scholar

  • Richendollar, M., Darby, L., & Brown, T. (2006). Ice bag application, active warm-up, and 3 measures of maximal functional performance. J Athl Train,41(4), 364-370.PubMedGoogle Scholar

  • Rubley, M., Denegar, C., Buckley, W., & Newell, K. (2003). Cryotherapy, Sensation, and Isometric-Force Variability. J Athl Train, 38(2), 113-119.PubMedGoogle Scholar

  • Ruiz, D., Myrer, J., Durrant, E., & Fellingham, G. (1993). The effect of cryotherapy on concentric and eccentric strength in the quadriceps muscle after sequential bouts of exercise. J AthlTrain, 28, 320-323.Google Scholar

  • Sanya, A., & Bello, A. (1999). Effects of cold application on isometric strength and endurance of quadriceps femoris muscle. Afr J Med Med Sci, 28, 195-198.PubMedGoogle Scholar

  • Schniepp, J., Campbell, T., Powell, K., & Pincivero, D. (2002). The Effects of Cold-Water Immersion on Power Output and Heart Rate in Elite Cyclists. Journal of Strength & Conditioning Research, 16(4), 561-566.Google Scholar

  • Scott, C., Ducharme, M., Haman, F., & Kenny, G. (2004). Warming by immersion or exercise affects initial cooling rate during subsequent cold water immersion. Aviat Space Environ Med, 75(11), 956- 963.PubMedGoogle Scholar

  • Simjanovic, M., Hooper, S., Leveritt, M., Kellmann, M., & Rynne, S. (2008). The use and perceived effectiveness of recovery modalities and monitoring techniques in elite sport. In: J. Cook, Journal of Science and Medicine in Sport (Supplement). 2008 ASICS Conference of Science and Medicine in Sport: Program and Abstracts, Hamilton Island, QLD, Australia, (22), 16-18Google Scholar

  • October, 2008; Skurvydas, A., Sipaviciene, S., Krutulyte, G., Gailiuniene, A., Stasiulis, A., Mamkus, G., & Stanislovaitis, A. (2006). Cooling leg muscles affects dynamics of indirect indicators of skeletal muscle damage. Journal of Back and MusculoskeletalRehabilitation, 19, 141-151.Google Scholar

  • Sleivert, G., Cotter, J., Roberts, W., & Febbraio, M. (2001). The influence of whole-body vs. torso pre-cooling on physiological strain and performance of high-intensity exercise in the heat. Comp Biochem Physiol A Mol Integr Physio,128(4), 657-66. Stanley, D., Kraemer, W., Howard, R., Armstrong, L., & Maresh, C. (1994).The Effects of Hot Water Immersion on Muscle Strength. Journal of Strength &Conditioning Research, 8(3), 134-138.CrossrefGoogle Scholar

  • Surenkok, O., Aytar, A., Tüzün, E., & Akman, M. (2008). Cryotherapy impairs knee joint position sense and balance. Isokinetics and Exercise Science, 16(1), 69-73.Google Scholar

  • Swenson, C., Swärd, L., & Karlsson, J. (1996). Cryotherapy in Sports Medicine. Scand J Med Sci Sports, 6(4), 193-200.PubMedGoogle Scholar

  • Thieme, H. (1992). The effects of cooling on proprioception of the knee [Thesis]. Terre Haute, Indiana State University.Google Scholar

  • Thieme, H., Ingersoll, C., Knight, K., & Ozmun, J. (1996). Cooling does not affect proprioception at the knee. J Athl Train, 31, 8-10.PubMedGoogle Scholar

  • Thiriet, P., Gozal, D., Wouassi, D., Oumaru, T., Gelas, H., & Lacour, J. (1993). The effect of various recovery modalities on subsequent performance, in consecutive supramaximal exercise. J Sports Med Phys Fitness, 33(2), 118-129.PubMedGoogle Scholar

  • Uchio, Y., Ochi, M., Fujihara, A., Adachi, N., Iwasa, J., & Sakai, Y. (2003). Cryotherapy influences joint laxity and position sense of the healthy knee joint. Arch Phys med Rehabil, 84(1), 131-5.CrossrefPubMedGoogle Scholar

  • Ückert, S., & Joch, W. (2007). Effects of warm-up and precooling on endurance performance in the heat. British Journal of Sports Medicine, 41, 380-384.CrossrefPubMedGoogle Scholar

  • Vaile, J., Halson, S., Gill, N., & Dawson, B. (2008a). Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. European Journalof Applied Physiology, 102(4), 447-455.CrossrefGoogle Scholar

  • Vaile, J., Halson, S., Gill, N., & Dawson B. (2008b). Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat. Journal ofSports Sciences, 26(5), 431 - 440.CrossrefGoogle Scholar

  • Verducci, F. (1997). Interval cryotherapy and fatigue in university baseball pitchers. Research Quarterly for Exercise and Sport, 72, 280-287.Google Scholar

  • Verducci, F. (2000). Interval Cryotherapy Decreases Fatigue During Repeated Weight Lifting. J Athl Traing, 35(4), 422-426.Google Scholar

  • Wassinger, C., Myers, J., Gatti, J., Conley, K., & Lephart, S. (2007). Proprioception and throwing accuracy in the dominant shoulder after cryotherapy. J AthlTrain, 42(1), 84-89.Google Scholar

  • Weber, M., Servedio, F., & Woodwall, W. (1994). The Effects of three modalities on delayed onset muscle soreness. Journal Orthopaedic Sports Physical Therapy, 20, 236-242.CrossrefGoogle Scholar

  • Yackzan, L., Adams, C., & Francis, K. (1984). The effects of ice massage on delayed muscle soreness. American Journal of Sports Medicine, 12, 159-165.CrossrefGoogle Scholar

  • Zemke, J., Anderson, J., Guion, W., McMillan, J., & Joyner, A. (1998). Intramuscular temperature responses in the human leg to two forms of cryotherapy: ice massage and ice bag. J Sports Rehabil, 27, 301-307. Google Scholar

About the article

Márcio Luís Pinto Domingues

Márcio DOMINGUES is a finishing PhD Student at the Faculty of Sports Science within the University of Coimbra. He has published national and international articles in sport related themes and made several oral communications internationally. Currently he’s developing two projects related to young sport, migration and talent development.


Published Online: 2013-08-28

Published in Print: 2013-08-01


Citation Information: Sport Science Review, ISSN (Online) 2069-7244, ISSN (Print) 2066-8732, DOI: https://doi.org/10.2478/ssr-2013-0012.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in