Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistics & Risk Modeling

with Applications in Finance and Insurance

Editor-in-Chief: Stelzer, Robert

4 Issues per year


Cite Score 2016: 0.33

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.167

Mathematical Citation Quotient (MCQ) 2016: 0.32

Online
ISSN
2196-7040
See all formats and pricing
More options …
Volume 33, Issue 1-2

Issues

Implied basket correlation dynamics

Wolfgang Karl Härdle
  • Ladislaus von Bortkiewicz Chair of Statistics, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany; and Sim Kee Boon Institute for Financial Economics, Singapore Management University, Administration Building, 81 Victoria Street, 188065, Singapore
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elena Silyakova
  • Corresponding author
  • Ladislaus von Bortkiewicz Chair of Statistics, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-07-28 | DOI: https://doi.org/10.1515/strm-2014-1176

Abstract

Equity basket correlation can be estimated both using the physical measure from stock prices, and also using the risk neutral measure from option prices. The difference between the two estimates motivates a so-called “dispersion strategy”. We study the performance of this strategy on the German market and propose several profitability improvement schemes based on implied correlation (IC) forecasts. Modelling IC conceals several challenges. Firstly the number of correlation coefficients would grow with the size of the basket. Secondly, IC is not constant over maturities and strikes. Finally, IC changes over time. We reduce the dimensionality of the problem by assuming equicorrelation. The IC surface (ICS) is then approximated from the implied volatilities of stocks and the implied volatility of the basket. To analyze the dynamics of the ICS we employ a dynamic semiparametric factor model.

Keywords: Correlation risk; dimension reduction; dispersion strategy; dynamic factor models

MSC 2010: 62H25; 62H15; 62H20

References

  • [1]

    Allen P. and Granger N., Correlation vehicles. Techniques for trading equity correlation, Technical Report, JPMorgan, London, 2005. Google Scholar

  • [2]

    Bai Z. D., Methodologies in spectral analysis of large dimensional random matrices, Statist. Sinica 9 (1999), 611–677. Google Scholar

  • [3]

    Bakshi G., Cao C. and Chen Z., Do call and underlying prices always move in the same direction?, Rev. Financial Stud. 13 (2000), no. 3, 549–584. Google Scholar

  • [4]

    Bakshi G., Kapadia N. and Madan D., Stock return characteristics, skew laws, and differential pricing of individual equity options, Rev. Financial Stud. 16 (2003), 101–143. Google Scholar

  • [5]

    Bickel P. J. and Levina E., Covariance regularization by thresholding, Ann. Statist. 36 (2008), no. 6, 2577–2604. Web of ScienceGoogle Scholar

  • [6]

    Bickel P. J. and Levina E., Regularized estimation of large covariance matrices, Ann. Statist. 36 (2008), no. 1, 199–227. Google Scholar

  • [7]

    Blair B. J., Poon S.-H. and Taylor S. J., Forecasting S&P100 volatility: The incremental information content of implied volatilities and high-frequency index returns, J. Econom. 105 (2001), no. 1, 5–26. Google Scholar

  • [8]

    Bollerslev T., Engle R. F. and Wooldridge J. M., A capital asset pricing model with time-varying covariances, J. Political Econom. 96 (1988), no. 1, 116–31. Google Scholar

  • [9]

    Bossu S., Strasser S. and Guichard R., Just what you need to know about variance swaps, Technical Report, JPMorgan, London, 2005. Google Scholar

  • [10]

    Bourgoin F., Stress-testing correlations: An application to portfolio risk management, Developments in Forecast Combination and Portfolio Choice, Wiley, New York, (2001). Google Scholar

  • [11]

    Breeden D. T. and Litzenberger R. H., Prices of state-contingent claims implicit in option prices, J. Business 51 (1978), no. 4, 621–51. Google Scholar

  • [12]

    Britten-Jones M. and Neuberger A. J., Option prices, implied price processes, and stochastic volatility, J. Finance 55 (2000), no. 2, 839–866. Google Scholar

  • [13]

    Campa J. M. and Chang P., The forecasting ability of correlations implied in foreign exchange options, J. Int. Money Finance 17 (1998), no. 6, 855–880. Google Scholar

  • [14]

    Carr P. and Madan D., Towards a theory of volatility trading, Reprinted in Option Pricing, Interest Rates, and Risk Management, Cambridge University Press, Cambridge (1998), 417–427. Google Scholar

  • [15]

    Carr P. and Wu L., Variance risk premiums, Rev. Financial Stud. 22 (2009), no. 3, 1311–1341. Google Scholar

  • [16]

    Christensen B. and Prabhala N., The relation between implied and realized volatility, J. Financial Econom. 50 (1998), no. 2, 125–150. Google Scholar

  • [17]

    Cont R. and Da Fonseca J., Dynamics of implied volatility surfaces, Quant. Finance 2 (2002), 45–60. Google Scholar

  • [18]

    Cox J. C., Ross S. A. and Rubinstein M., Option pricing: A simplified approach, J. Financial Econom. 7 (1979), 229–263. Google Scholar

  • [19]

    Demeterfi K., Derman E., Kamal M. and Zou J., More than you ever wanted to know about volatility swaps, Technical Report, Goldman Sachs, New York, 1999. Google Scholar

  • [20]

    Driessen J., Maenhout P. J. and Vilkov G., The price of correlation risk: Evidence from equity options, J. Finance 9 (2009), 1377–1406. Google Scholar

  • [21]

    Engle R., Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models, J. Bus. Econom. Statist. 20 (2002), no. 3, 339–350. Google Scholar

  • [22]

    Engle R. F., Shephard N. and Sheppard K., Fitting vast dimensional time-varying covariance models, Economics Series Working Papers 403, University of Oxford, Oxford, 2008. Google Scholar

  • [23]

    Fan J., Fan Y. and Lv J., High dimensional covariance matrix estimation using a factor model, J. Econom. 147 (2008), 186–197. Google Scholar

  • [24]

    Fengler M. R., Härdle W. K. and Mammen E., A semiparametric factor model for implied volatility surface dynamics, J. Financial Econom. 5 (2007), no. 2, 189–218. Google Scholar

  • [25]

    Fleming J., The quality of market volatility forecasts implied by S&P100 index option prices, J. Empirical Finance 5 (1998), no. 4, 317–345. Google Scholar

  • [26]

    Hafner R., Stochastic Implied Volatility, Springer, Heidelberg, 2004. Google Scholar

  • [27]

    Hall P., Müller H.-G. and Wang J.-L., Properties of principal component methods for functional and longitudinal data analysis, Ann. Statist. 34 (2006), no. 3, 1493–1517. Google Scholar

  • [28]

    Härdle W., Müller M., Sperlich S. and Werwatz A., Nonparametric and Semiparametric Models, Springer, Heidelberg, 2004. Google Scholar

  • [29]

    Härdle W. and Simar L., Applied Multivariate Statistical Analysis, 4rd ed., Springer, Heidelberg, 2012. Google Scholar

  • [30]

    Indritz J., Methods in Analysis, Macmillan, New York, 1963. Google Scholar

  • [31]

    Laloux L., Cizeau P., Bouchaud J.-P. and Potters M., Noise dressing of financial correlation matrices, Phys. Rev. Lett. 83 (1999), 1467–1470. Google Scholar

  • [32]

    Ledoit O. and Wolf M., Improved estimation of the covariance matrix of stock returns with an application to portfolio selection, J. Empirical Finance 10 (2003), no. 5, 603–621. Google Scholar

  • [33]

    Lopez J. and Walter C., Is implied correlation worth calculating? Evidence from foreign exchange options and historical data, J. Derivatives 7 (2000), no. 3, 65–81. Google Scholar

  • [34]

    Muggeo V. M. R., Estimating regression models with unknown break-points, Stat. Med. 22 (2003), no. 19, 3055–3071. Google Scholar

  • [35]

    Park B., Mammen E., Härdle W. and Borak S., Dynamic semiparametric factor models, J. Amer. Statist. Assoc. 104 (2009), 284–298. Google Scholar

  • [36]

    Plerou V., Gopikrishnan P., Rosenow B., Amaral L. A. N., Guhr T. and Stanley H. E., Random matrix approach to cross correlations in financial data, Phys. Rev. E 65 (2002), Article ID 066126. Google Scholar

  • [37]

    Ramsay J. and Silverman B. W., Functional Data Analysis, 2nd ed., Springer Ser. Statist., Springer, Heidelberg, 2010. Google Scholar

  • [38]

    Skintzi V. and Refenes A., Implied correlation index: A new measure of diversification, J. Futures Markets 25 (2005), 171–197. Google Scholar

  • [39]

    Song S., Härdle W. K. and Ritov Y., High dimensional nonstationary time series modelling with generalized dynamic semiparametric factor model, Econom. J. 17 (2014), 1–32. Google Scholar

  • [40]

    Sperlich S., Linton O. B. and Härdle W. K., Integration and backfitting methods in additive models-finite sample properties and comparison, Test 8 (1999), 419–458. Google Scholar

  • [41]

    Yao F., Müller H.-G. and Wang J.-L., Functional data analysis for sparse longitudinal data, J. Amer. Statist. Assoc. 100 (2005), 577–590. Google Scholar

About the article

Received: 2014-12-25

Revised: 2016-06-14

Accepted: 2016-06-30

Published Online: 2016-07-28

Published in Print: 2016-06-01


Funding Source: Deutsche Forschungsgemeinschaft

Award identifier / Grant number: CRC 649 “Economic Risk”

The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through CRC 649 “Economic Risk”.


Citation Information: Statistics & Risk Modeling, Volume 33, Issue 1-2, Pages 1–20, ISSN (Online) 2196-7040, ISSN (Print) 2193-1402, DOI: https://doi.org/10.1515/strm-2014-1176.

Export Citation

© 2016 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Stefano Battiston, Antoine Mandel, Irene Monasterolo, Franziska Schütze, and Gabriele Visentin
Nature Climate Change, 2017, Volume 7, Number 4, Page 283

Comments (0)

Please log in or register to comment.
Log in