Jump to ContentJump to Main Navigation
Show Summary Details
More options …

tm - Technisches Messen

Plattform für Methoden, Systeme und Anwendungen der Messtechnik

[TM - Technical Measurement: A Platform for Methods, Systems, and Applications of Measurement Technology
]

Editor-in-Chief: Puente León, Fernando / Zagar, Bernhard


IMPACT FACTOR 2018: 0.594

CiteScore 2018: 0.54

SCImago Journal Rank (SJR) 2018: 0.261
Source Normalized Impact per Paper (SNIP) 2018: 0.563

Online
ISSN
2196-7113
See all formats and pricing
More options …
Volume 85, Issue 4

Issues

Design of a rotational iron loss measurement system

Entwicklung eines Messsystems zur Bestimmung von Eisenverlusten bei Drehmagnetisierung

Martin Kitzberger
  • Corresponding author
  • Johannes Kepler University Linz, Institute for Electrical Drives and Power Electronics, Altenbergerstraße 69, 4040 Linz, Austria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gerd Bramerdorfer
  • Johannes Kepler University Linz, Institute for Electrical Drives and Power Electronics, Altenbergerstraße 69, 4040 Linz, Austria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dietmar Andessner / Gereon Goldbeck
  • Johannes Kepler University Linz, Institute for Electrical Drives and Power Electronics, Altenbergerstraße 69, 4040 Linz, Austria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wolfgang Amrhein
  • Johannes Kepler University Linz, Institute for Electrical Drives and Power Electronics, Altenbergerstraße 69, 4040 Linz, Austria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-02-09 | DOI: https://doi.org/10.1515/teme-2017-0098

Abstract

This article is about the design of a measurement system for measuring iron losses in soft magnetic composites under controlled circular flux density patterns. With conventional measurement setups for iron loss determination, material samples are usually magnetized along a single spatial direction. However, in some parts of electrical machines magnetization loci over time substantially divert from the patterns used during conventional alternating loss measurements. Based on previous findings, iron losses strongly depend on the actual two dimensional magnetization locus over time. Therefore, the measurement with alternating magnetization cannot fully reflect the magnetizing conditions and iron losses present during machine operation. Available data especially for soft magnetic composites (SMC) regarding rotational losses is very limited. Hence, in this article a new measurement setup for the investigation of iron losses under controlled circular flux density loci was designed. It turns out, that iron losses show a significant deviation when comparing alternating and rotational losses with regard to the flux density magnitude and frequency.

Zusammenfassung

Dieser Artikel beschreibt das Design einer Messvorrichtung zur Bestimmung der Eisenverluste in Soft Magnetic Composite (SMC) Materialien bei eingeprägter kreisförmiger Drehmagnetisierung. Häufig werden die im Material auftretenden Eisenverluste mit Messmethoden bestimmt, bei denen die Magnetisierung nur entlang einer einzigen Raumrichtung des zu untersuchenden Materials variiert wird. Aktuelle Verlustmodelle basieren ebenfalls meist auf Messdaten welche bei einachsiger alternierender Magnetisierung erfasst wurden. Bei elektrischen Maschinen treten jedoch in manchen Bereichen von Rotor und Stator komplexere zweiachsige zeitlich veränderliche Magnetisierungsverläufe auf. Neuere Untersuchungen zeigen, dass die Eisenverluste eine starke Abhängigkeit vom zweidimensionalen zeitlichen Flussdichteverlauf im Material aufweisen. Die einachsige Verlustmessung deckt somit die Magnetisierungsverläufe und Eisenverluste welche in der realen Maschine auftreten nicht zufriedenstellend ab. Es kommt dadurch zu Abweichungen in den tatsächlich auftretenden Eisenverlusten, von den zuvor durchgeführten Messungen und den daraus abgeleiteten Verlustmodellen. Speziell für SMC Materialien sind derzeit nur wenig Daten über den Anteil dieser sogenannten Drehverluste verfügbar. Der in diesem Artikel vorgestellte Messaufbau ermöglicht die messtechnische Bestimmung von Drehverlusten in Soft Magnetic Composite Material. Es zeigt sich, dass alternierende Verluste und Drehverluste je nach beobachteter Flussdichteamplitude und Frequenz einen unterschiedlichen Betrag aufweisen.

Keywords: Soft magnetic composites; rotational magnetization; iron losses; rotational losses.

Schlagwörter: Soft magnetic composites; Drehmagnetisierung; Eisenverluste; Drehverluste.

References

  • 1.

    C. Appino, F. Fiorillo and C. Ragussa, One-dimensional/two-dimensional loss measurements up to high inductions, Journal of Applied Physics, 105, 07E718 (2009).Web of ScienceGoogle Scholar

  • 2.

    G. Bertotti, General properties of power losses in soft ferromagnetic materials, IEEE Transactions on Magnetics, 24(1) (1988).Google Scholar

  • 3.

    G. Bramerdorfer, D. Andessner, W. Amrhein and B. Bauer, Design of a measurement system for investigating the magnetic characteristics of soft magnetic materials for non-sinusoidal periodic excitations, Technisches Messen, 83(6), Juni (2016).Web of ScienceGoogle Scholar

  • 4.

    Gerd Bramerdorfer and Dietmar Andessner, Accurate and Easy-to-Obtain Iron Loss Model for Electric Machine Design, IEEE Transactions on Industrial Electronics, 64(3), March (2017).Web of ScienceGoogle Scholar

  • 5.

    C. Ragusa, C. Appino and F. Fiorillo, Magnetic losses under two-dimensional flux loci in Fe-Si laminations, Journal of Magnetism and Magnetic Materials, 316, 454–457, (2007).Web of ScienceCrossrefGoogle Scholar

  • 6.

    M. Enokizono and J.D. Sievert, Numerical Analysis of Accuracy of Rotational Magnetic Loss Measurement Apparatus, IEEE Translation Journal on Magnetics in Japan, 5(9), September (1990).Google Scholar

  • 7.

    M. Enokizono and I. Tanabe, Studies on a New Simplified Rotational Loss Tester, IEEE Transactions on Magnetics, 33(5), September (1997).Google Scholar

  • 8.

    Youguang Guo, Measurement and Modeling of Rotational Core Losses of Soft Magnetic Materials Used in Electrical Machines: A Review, IEEE Transactions on magnetics, 44(2), (2008).Web of ScienceGoogle Scholar

  • 9.

    International Electrotechnical Commission, Magnetic Materials – Part 6: Methods of measurement of the magnetic properties of magnetically soft metallic and powder materials at frequencies in the range 20 Hz to 200 kHz by the use of ring specimens, June 2003.

  • 10.

    M. Kitzberger, G. Bramerdorfer, D. Andessner, G. Goldbeck and W. Amrhein, Measurement of Rotational Iron Loss in Soft Magnetic Composites, in: Tagungsband zur 5. Tagung Innovation Messtechnik 11. Mai (2017).Google Scholar

  • 11.

    C.P. Steinmetz, On the law of hysteresis(Part 2.) and other phenomena of the magnetic circuit., Transactions of the American Institute of Electrical Engineers, IX(1), Jan (1892).Google Scholar

  • 12.

    S. Tumanski, A multi-coil sensor for tangential magnetic field investigations, Journal of Magnetism and Magnetic Materials, 242-–245(2), 1153–1156, (2002).Google Scholar

  • 13.

    S. Tumanski, Handbook of Magnetic Measurements, CRC Press Tylor and Francis Group, 2011.Google Scholar

  • 14.

    John Wanjiku and Pragasen Pillay, Design of a Sinusoidally Wound 2-D Rotational Core Loss Setup With the Consideration of Sensor Sizing, IEEE Transactions on Industry Applications, 52(4), July/August (2016).Web of ScienceGoogle Scholar

  • 15.

    Weijie Xu, Nana Duan, Shuhong Wang, Youguang Guo and Jianguo Zhu, Modeling and Measurement of Magnetic Hysteresis of Soft Magnetic Composite Materials Under Different Magnetizations, IEEE Transactions on Industrial Electronics, 64(3), March (2017).Web of ScienceGoogle Scholar

  • 16.

    Jian Guo Zhu and Victor Stuart Ramsden, Improved Formulations for Rotational Core Losses in Rotating Electrical Machines, IEEE Transactions on Magnetics, 34(4), July (1998).Google Scholar

  • 17.

    S. Zurek and T. Meydan, Errors in the power loss measured in clockwise and anticlockwise rotational magnetisation. Part 1: Mathematical study, IEE Proc.-Sci. Meas. Technol., 153(4), July (2006).Google Scholar

About the article

Martin Kitzberger

Dipl.-Ing. Martin Kitzberger was born in Linz, Austria, in 1990. He received the Dipl.-Ing degree in Mechatronics in 2016 and is engaged as a scientific researcher at the Institute for Electrical Drives and Power Electronics of Johannes Kepler University Linz since then. His field of research includes electrical drives and power electronics, magnetic material characterization and material modeling.

Gerd Bramerdorfer

Dipl.-Ing. Dr. Gerd Bramerdorfer received the Ph.D. degree in electrical engineering from Johannes Kepler University Linz, Linz, Austria, in 2014. Since 2007, he has been with the Department of Electrical Drives and Power Electronics, Johannes Kepler University Linz, where he was involved in various research projects and held classes in the field of electric machines and power electronics. He is currently an Assistant Professor with Johannes Kepler University Linz. His current research interests include design, modeling, and optimization of high-efficient brushless electric machines as well as magnetic bearings and bearingless machines. Dr. Bramerdorfer is a member of the IEEE Industry Applications Society, the IEEE Industrial Electronics Society (IES), the IES Electrical Machines Technical Committee, and a Reviewer of several IEEE journals and conferences.

Dietmar Andessner

Dipl.-Ing. Dr. Dietmar Andessner received the Ph.D. degree in electrical engineering from Johannes Kepler University Linz, Linz, Austria. Since 2004 he held a position as a senior researcher at this institute. In December 2015 he moved to the Linz Center of Mechatronics GmbH (LCM) and is currently working on electrical machine design and project management.

Gereon Goldbeck

M.Sc. Gereon Goldbeck was born in Georgsmarienhütte, Germany, in 1988. He received the M.Sc. degree in electrical engineering from Osnabrück University of Applied Sciences, Germany, in 2015. He joined the Institute of Electrical Drives and Power Electronics of Johannes Kepler University Linz as a scientific researcher and is involved in modeling and optimization of electrical drives, magnetic material characterization and the development of software tools.

Wolfgang Amrhein

o.Univ.-Prof. Dipl.-Ing. Dr. sc. techn. Wolfgang Amrhein was born in Aschaffenburg, Germany, in 1957. He received the M.Sc. (Dipl.-Ing.) degree in electrical engineering in 1982 from the Technical University Darmstadt, Germany, and his Ph.D. (Dr. sc.techn.) degree in 1988 from the Swiss Federal Institute of Technology Zurich, Switzerland. From 1982 to 1990, he was with the Swiss Federal Institute of Technology Zurich as a Scientific Assistant. In 1990, he joined Papst Motoren GmbH, St. Georgen, Germany, where he became the Head of the development department in 1992. Since 1994, he has been a Professor and subsequently the Head of the Institute of Electrical Drives and Power Electronics, Johannes Kepler University (JKU), Linz, Austria. From 2000 to 2007 he was Scientific Head of the Linz Center of Competence in Mechatronics, Austria, together with Prof. R. Scheidl. Since 2010 he is also Head of the JKU HOERBIGER Research Institute for Smart Actuators at JKU. His research interests include electric drives, with special emphasis on small electric motors, magnetic bearing systems, bearingless motors, and power electronics.


Received: 2017-07-31

Revised: 2017-10-05

Accepted: 2018-01-19

Published Online: 2018-02-09

Published in Print: 2018-04-25


The projects are kindly supported by the Austrian and Upper Austrian government.


Citation Information: tm - Technisches Messen, Volume 85, Issue 4, Pages 233–243, ISSN (Online) 2196-7113, ISSN (Print) 0171-8096, DOI: https://doi.org/10.1515/teme-2017-0098.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in