Jump to ContentJump to Main Navigation
Show Summary Details
More options …

tm - Technisches Messen

Plattform für Methoden, Systeme und Anwendungen der Messtechnik

[TM - Technical Measurement: A Platform for Methods, Systems, and Applications of Measurement Technology
]

Editor-in-Chief: Puente León, Fernando / Zagar, Bernhard


IMPACT FACTOR 2018: 0.594

CiteScore 2018: 0.54

SCImago Journal Rank (SJR) 2018: 0.261
Source Normalized Impact per Paper (SNIP) 2018: 0.563

Online
ISSN
2196-7113
See all formats and pricing
More options …
Volume 86, Issue 3

Issues

High-speed laser interferometric distance sensor with reference mirror oscillating at ultrasonic frequencies

Laserinterferometrischer Hochgeschwindigkeits-Abstandssensor mit oszillierendem Referenzspiegel im Ultraschallbereich

Sebastian Hagemeier
  • Corresponding author
  • Measurement Technology Group, Faculty of Electrical Engineering and Computer Science, University of Kassel, Wilhelmshoeher Allee 71, 34121 Kassel, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stanislav Tereschenko
  • Measurement Technology Group, Faculty of Electrical Engineering and Computer Science, University of Kassel, Wilhelmshoeher Allee 71, 34121 Kassel, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Lehmann
  • Measurement Technology Group, Faculty of Electrical Engineering and Computer Science, University of Kassel, Wilhelmshoeher Allee 71, 34121 Kassel, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-02-23 | DOI: https://doi.org/10.1515/teme-2019-0012

Abstract

Optical measurement systems are an important part of the portfolio of 3D topography sensors. By precise, contactless and rapid measurements these sensors constitute an alternative to tactile instruments. In this contribution the principle of a laser interferometric distance sensor is presented, which in combination with lateral scan axes acts as a topography sensor and also as distance sensor for the compensation of vibrations in a coherence scanning Linnik interferometer. An advantage of this distance sensor is its high acquisition rate of height values, which in case of working as a topography sensor enables high scan velocities as it is demonstrated at a chirp standard measured with a scan velocity of 80 mm/s. This is much higher than the scan velocity of tactile instruments, which are typically limited up to 1 mm/s. In addition, the compensation of vibration disturbances demonstrates the capability of the fast distance measurement.

In contrast to other existing high-speed point sensors the relevant components are mass products. This keeps the costs of the sensor setup in a limited range. Furthermore, the sensor shows potential of much higher measurement rates than 116 kHz provided by the sensor used here.

Zusammenfassung

Optische Messsysteme bilden einen wichtigen Bestandteil des Portfolios an 3D-Topographiesensoren. Durch präzise, berührungslose und schnelle Messungen stellen diese Sensoren eine Alternative zu taktilen Tastern dar. In diesem Beitrag wird das Prinzip eines laserinterferometrischen Abstandssensors vorgestellt, welcher in Kombination mit lateralen Scanachsen als Topographiesensor und ebenso als Abstandssensor zur Kompensation von Vibrationen in einem Linnik-Interferometer dient. Ein Vorteil dieses Abstandssensors ist seine hohe Erfassungsrate von Höhenwerten, welche beim Einsatz als Topographiesensor hohe Scangeschwindigkeiten ermöglicht, wie durch eine Messung an einem Chirpnormal mit einer Scangeschwindigkeit von 80 mm/s gezeigt wird. Diese liegt deutlich über der Scangeschwindigkeit von taktilen Tastschnittgeräten, welche typischerweise auf 1 mm/s begrenzt sind. Die Kompensation von Störschwingungen demonstriert zusätzlich die Möglichkeiten, die sich aus der schnellen Abstandsmessung ergeben.

Im Vergleich zu anderen existierenden Hochgeschwindigkeitspunktsensoren sind die relevanten Bauteile des Sensors Massenprodukte. Dies hält die Kosten des Sensors in engen Grenzen. Des Weiteren verfügt der hier präsentierte Sensor über Potenzial zur Erhöhung der Messdatenrate auf deutlich über 116 kHz.

Keywords: Laser interferometric distance sensor; high-speed sensor; coherence scanning interferometry; vibration compensation; sinusoidal phase modulation

Schlagwörter: Laserinterferometrischer Abstandssensor; Hochgeschwindigkeitssensor; Weißlichtinterferometrie; Vibrationskompensation; sinusförmige Phasenmodulation

References

  • 1.

    Uwe Brand, Lutz Doering, Sai Gao, Thomas Ahbe, Sebastian Buetefisch, Zhi Li, Andre Felgner, Rudolf Meess, Karla Hiller, Erwin Peiner and et al., Sensors and calibration standards for precise hardness and topography measurements in micro-and nanotechnology, VDE, GMM-Workshop 6 (2016), 1–5.Google Scholar

  • 2.

    Tim Dabbs and Monty Glass, Fiber-optic confocal microscope: FOCON, Applied Optics 31 (1992), 3030–3035.CrossrefGoogle Scholar

  • 3.

    Peter de Groot, Design of error-compensating algorithms for sinusoidal phase shifting interferometry, Applied Optics 48 (2009), 6788–6796.Web of ScienceCrossrefGoogle Scholar

  • 4.

    Peter de Groot, Principles of interference microscopy for the measurement of surface topography, Advances in Optics and Photonics 7 (2015), 1–65.CrossrefWeb of ScienceGoogle Scholar

  • 5.

    Peter J De Groot, Extending the unambiguous range of two-color interferometers, Applied Optics 33 (1994), 5948–5953.CrossrefGoogle Scholar

  • 6.

    Frank Depiereux, Peter Lehmann, Tilo Pfeifer and Robert Schmitt, Fiber-optical sensor with miniaturized probe head and nanometer accuracy based on spatially modulated low-coherence interferogram analysis, Applied Optics 46 (2007), 3425–3431.Web of ScienceCrossrefGoogle Scholar

  • 7.

    DIN EN ISO 3274, Geometrical Product Specifications (GPS) – Surface texture: Profile method – Nominal characteristics of contact (stylus) instruments (1996).

  • 8.

    Lutz Doering, Uwe Brand, Sebastian Bütefisch, Thomas Ahbe, Thomas Weimann, Erwin Peiner and Thomas Frank, High-speed microprobe for roughness measurements in high-aspect-ratio microstructures, Measurement Science and Technology 28 (2017), 034009.CrossrefWeb of ScienceGoogle Scholar

  • 9.

    Konstantinos Falaggis, David P Towers and Catherine E Towers, Method of excess fractions with application to absolute distance metrology: theoretical analysis, Applied Optics 50 (2011), 5484–5498.Web of ScienceCrossrefGoogle Scholar

  • 10.

    Konstantinos Falaggis, David P Towers and Catherine E Towers, Unified theory of phase unwrapping approaches in multiwavelength interferometry, SPIE Proceedings 8011 (2011), 80117.Google Scholar

  • 11.

    Min Gu and CJR Sheppard, Signal level of the fibre-optical confocal scanning microscope, Journal of Modern Optics 38 (1991), 1621–1630.CrossrefGoogle Scholar

  • 12.

    Philipp Günther, Thorsten Pfister, Lars Büttner and Jürgen Czarske, Laser-Doppler-Distanzsensor mit Phasenauswertung zur Messung von Position und Form rotierender Objekte, tm-Technisches Messen 77 (2010), 479–485.Google Scholar

  • 13.

    Sebastian Hagemeier and Peter Lehmann, Multisensorisches Messsystem zur Untersuchung der Übertragungseigenschaften von Topographiesensoren, tm-Technisches Messen 85 (2018), 380–394.CrossrefGoogle Scholar

  • 14.

    Sebastian Hagemeier, Markus Schake and Peter Lehmann, Sensor characterization by comparative measurements using a multisensor measuring system, Journal of Sensors and Sensor Systems (to be published).Google Scholar

  • 15.

    Hans-Joachim Jordan, M Wegner and H Tiziani, Highly accurate non-contact characterization of engineering surfaces using confocal microscopy, Measurement Science and Technology 9 (1998), 1142.CrossrefGoogle Scholar

  • 16.

    Shigeharu Kimura and Tony Wilson, Confocal scanning optical microscope using single-mode fiber for signal detection, Applied Optics 30 (1991), 2143–2150.CrossrefGoogle Scholar

  • 17.

    Holger Knell, Sören Laubach, Gerd Ehret and Peter Lehmann, Continuous measurement of optical surfaces using a line-scan interferometer with sinusoidal path length modulation, Optics Express 22 (2014), 29787–29798.Web of ScienceCrossrefGoogle Scholar

  • 18.

    Herwig Kogelnik and Tingye Li, Laser beams and resonators, Applied Optics 5 (1966), 1550–1567.CrossrefGoogle Scholar

  • 19.

    Rolf Krüger-Sehm, Peter Bakucz, Lena Jung and Harald Wilhelms, Chirp-Kalibriernormale für Oberflächenmessgeräte (Chirp calibration standards for surface measuring instruments), tm-Technisches Messen 74 (2007), 572–576.Google Scholar

  • 20.

    Peter Lehmann, Peter Lücke, Jürgen Mohr, Carlos Javier Moran-Iglesias, Wolfgang Osten, Aiko Ruprecht and Sven Schönfelder, Optical measuring head, US patent US 7,486,394 B2, 2009.

  • 21.

    W Lyda, M Gronle, D Fleischle, F Mauch and W Osten, Advantages of chromatic-confocal spectral interferometry in comparison to chromatic confocal microscopy, Measurement Science and Technology 23 (2012), 054009.Web of ScienceCrossrefGoogle Scholar

  • 22.

    Daniel Malacara, Optical shop testing, John Wiley & Sons, 2007.Google Scholar

  • 23.

    Thorsten Pfister, Lars Büttner and Jürgen Czarske, Laser Doppler sensor employing a single fan-shaped interference fringe system for distance and shape measurement of laterally moving objects, Applied optics 48 (2009), 140–154.CrossrefWeb of ScienceGoogle Scholar

  • 24.

    Yun-Jiang Rao and David A Jackson, Recent progress in fibre optic low-coherence interferometry, Measurement Science and Technology 7 (1996), 981.CrossrefGoogle Scholar

  • 25.

    Osami Sasaki and Hirokazu Okazaki, Sinusoidal phase modulating interferometry for surface profile measurement, Applied Optics 25 (1986), 3137–3140.CrossrefGoogle Scholar

  • 26.

    Markus Schake and Peter Lehmann, Anwendungsorientiertes Verfahren zur Eindeutigkeitsbereichserweiterung eines fasergekoppelten Zweiwellenlaengen-Interferometers, tm-Technisches Messen 83 (2016), 192–200.Google Scholar

  • 27.

    Markus Schake, Markus Schulz and Peter Lehmann, High-resolution fiber-coupled interferometric point sensor for micro-and nano-metrology, tm-Technisches Messen 82 (2015), 367–376.Web of ScienceGoogle Scholar

  • 28.

    M Schulz and P Lehmann, Measurement of distance changes using a fibre-coupled common-path interferometer with mechanical path length modulation, Measurement Science and Technology 24 (2013), 065202.Web of ScienceCrossrefGoogle Scholar

  • 29.

    M Schulz and P Lehmann, Fasergekoppelter High-Speed-Sensor zum Messen optischer Funktionsflächen, GMA/ITG-Fachtagung Sensoren und Messsysteme 18 (2016), 411–417.Google Scholar

  • 30.

    Jörg Seewig, Matthias Eifler and Georg Wiora, Unambiguous evaluation of a chirp measurement standard, Surface Topography: Metrology and Properties 2 (2014), 045003.Google Scholar

  • 31.

    Sidney A Self, Focusing of spherical Gaussian beams, Applied optics 22 (1983), 658–661.CrossrefGoogle Scholar

  • 32.

    Sucheta Sharma, Peter Eiswirt and Jürgen Petter, Electro optic sensor for high precision absolute distance measurement using multiwavelength interferometry, Optics Express 26 (2018), 3443–3451.CrossrefWeb of ScienceGoogle Scholar

  • 33.

    Klaus-Dieter Sommer and Bernd RL Siebert, Praxisgerechtes Bestimmen der Messunsicherheit nach GUM (Practical Determination of the Measurement Uncertainty under GUM), tm–Technisches Messen 71 (2004), 52–66.CrossrefGoogle Scholar

  • 34.

    Przemyslaw Struk, Sylwester Bargiel, Quentin AA Tanguy, Christophe Gorecki, Huikai Xie, Ravinder Chutani, Nicolas Passilly and Alain Billard, The SS-OCT endomicroscopy probe based on MOEMS Mirau micro-interferometer for early stomach cancer detection, SPIE Proceedings 10678 (2018), 1067807.Google Scholar

  • 35.

    Stanislav Tereschenko, Digitale Analyse periodischer und transienter Messsignale anhand von Beispielen aus der optischen Präzisionsmesstechnik, Ph.D. thesis, University of Kassel, Germany, 2018.Google Scholar

  • 36.

    Stanislav Tereschenko and Peter Lehmann, Inline-fähige Weißlichtinterferometrie mit integrierter Schwingungskompensation/Inline scanning white-light interferomety with integrated vibration compensation, tm-Technisches Messen 85 (2018), 14–20.CrossrefGoogle Scholar

  • 37.

    Stanislav Tereschenko, Peter Lehmann, Lisa Zellmer and Angelika Brueckner-Foit, Passive vibration compensation in scanning white-light interferometry, Applied Optics 55 (2016), 6172–6182.CrossrefWeb of ScienceGoogle Scholar

  • 38.

    Christopher Willis, Patrick L Poole, Kramer U Akli, Douglass W Schumacher and Richard R Freeman, A confocal microscope position sensor for micron-scale target alignment in ultra-intense laser-matter experiments, Review of Scientific Instruments 86 (2015), 053303.CrossrefWeb of ScienceGoogle Scholar

  • 39.

    QM Zhang, WY Pan and Leslie E Cross, Laser interferometer for the study of piezoelectric and electrostrictive strains, Journal of Applied Physics 63 (1988), 2492–2496.CrossrefGoogle Scholar

About the article

Sebastian Hagemeier

M.Sc. Sebastian Hagemeier is a research assistant in Measurement Technology Group of University of Kassel, Faculty of Electrical Engineering and Computer Science. Research interest: Multisensor measuring system for topography sensors, Fiber optic sensors, Coherence scanning interferometry (CSI).

Stanislav Tereschenko

Dr.-Ing. Stanislav Tereschenko is a research assistant in Measurement Technology Group of University of Kassel, Faculty of Electrical Engineering and Computer Science. Research interest: Coherence scanning interferometry (CSI), Vibration compensation in CSI, Signal processing in CSI and laser interferometry.

Peter Lehmann

Prof. Dr.-Ing. habil. Peter Lehmann is head of the Measurement Technology Group of University of Kassel, Faculty of Electrical Engineering and Computer Science. Research interest: Optical metrology, Interferometry, Fiber optic sensors.


Received: 2019-01-22

Accepted: 2019-02-03

Published Online: 2019-02-23

Published in Print: 2019-03-26


Citation Information: tm - Technisches Messen, Volume 86, Issue 3, Pages 164–174, ISSN (Online) 2196-7113, ISSN (Print) 0171-8096, DOI: https://doi.org/10.1515/teme-2019-0012.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sebastian Hagemeier, Markus Schake, and Peter Lehmann
Journal of Sensors and Sensor Systems, 2019, Volume 8, Number 1, Page 111

Comments (0)

Please log in or register to comment.
Log in