Jump to ContentJump to Main Navigation
Show Summary Details
More options …

tm - Technisches Messen

Plattform für Methoden, Systeme und Anwendungen der Messtechnik

[TM - Technical Measurement: A Platform for Methods, Systems, and Applications of Measurement Technology
]

Editor-in-Chief: Puente León, Fernando / Zagar, Bernhard


IMPACT FACTOR 2018: 0.594

CiteScore 2018: 0.54

SCImago Journal Rank (SJR) 2018: 0.261
Source Normalized Impact per Paper (SNIP) 2018: 0.563

Online
ISSN
2196-7113
See all formats and pricing
More options …
Volume 86, Issue 4

Issues

Inline-fähige Weißlichtinterferometrie mit integrierter Schwingungskompensation

Inline scanning white-light interferomety with integrated vibration compensation

Dr.-Ing. Stanislav Tereschenko
  • Corresponding author
  • Universität Kassel, Fachgebiet Messtechnik, Wilhelmshöher Allee, 71, D-34109 Kassel, Deutschland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Prof. Dr.-Ing. habil. Peter Lehmann
Published Online: 2019-03-14 | DOI: https://doi.org/10.1515/teme-2018-0085

Zusammenfassung

Weißlichtinterferometer sind weit verbreitete Messgeräte zur Erfassung von 3D-Mikrotopographien. Der Einsatz solcher Messgeräte in maschinennaher Umgebung abseits schwingungsgedämpfter Labore wird durch Umgebungsschwingungen erschwert oder sogar unmöglich gemacht. In diesem Beitrag wird ein passives Kompensationsverfahren am Beispiel von zwei interferometrischen Sensoren vorgestellt, mit dem der Einfluss beliebiger sowohl periodischer als auch transienter axialer Störschwingungen auf interferometrische Weißlichtmessungen kompensiert werden kann. Durch die zeitlich hochaufgelöste Abstandserfassung eines in das Weißlichtinterferometer integrierten Abstandsinterferometers werden alle Abweichungen von dem Soll-Tiefenscanverlauf gemessen und zur Korrektur der Weißlichtinterferenzsignale verwendet. Daraus wird anschließend mit etablierten Auswertealgorithmen die Oberflächentopographie berechnet. Die Schwingungskompensation wird anhand von Vergleichsmessungen mit und ohne Störschwingungen an verschiedenen Messobjekten demonstriert.

Abstract

Scanning white-light interferometers are widely used measuring instruments for 3D microtopography. Due to environmental vibrations the use of such devices in close-to-machine environments away from vibration-damped laboratories is difficult or even impossible. In this article we present a passive vibration compensation method using the example of two interferometric sensors, which can compensate for the influence of arbitrary periodic and transient axial vibrations on the interferometric white-light measurements. Due to the temporally high-resolution distance detection of a distance measuring laser interferometer integrated into the white-light interferometer, all deviations from the desired linear depth-scanning process are measured and this information is used to correct the white-light interference signals. From these, the surface topography is calculated by well-known evaluation algorithms. The vibration compensation is demonstrated based on comparative measurements with and without disturbing vibrations for different measuring objects.

Schlagwörter: Weißlichtinterferometrie; Schwingungskompensation; Michelson-Laserinterferometer; Linnik-Interferometer; In-situ-Messung; Frequenzanalyse

Keywords: Scanning white-light interferometry; vibration compensation; michelson interferometer; linnik interferometer; close-to-machine applications; frequency domain evaluation

Literatur

  • 1.

    M. Davidson, K. Kaufman, I. Mazor, and F. Cohen. An application of interference microscopy to integrated circuit inspection and metrology. Proc. of SPIE, 0775:233–247, 1987.CrossrefGoogle Scholar

  • 2.

    S. S. C. Chim and G. S. Kino. Phase measurements using the mirau correlation microscope. Applied Optics, 30(16):2197–2201, 1991.CrossrefGoogle Scholar

  • 3.

    P. de Groot, X. Colonna de Lega, J. Kramer, and M. Turzhitsky. Determination of fringe order in white-light interference microscopy. Applied Optics, 41(22):4571–4578, 2002.CrossrefGoogle Scholar

  • 4.

    S. Tereschenko. Digitale Analyse periodischer und transienter Messsignale anhand von Beispielen aus der optischen Präzisionsmesstechnik. Dissertation, Universität Kassel, 2017.

  • 5.

    G. C. Cole, J. H. Burge, and L. R. Dettmann. Vibration stabilization of a phase shifting interferometer for large optics. Proc. of SPIE, 3134:438–446, 1997.CrossrefGoogle Scholar

  • 6.

    C. Zhao and J. H. Burge. Vibration-compensated interferometer for measuring cryogenic mirrors. Proc. of SPIE, 3782:399–406, 1999.CrossrefGoogle Scholar

  • 7.

    H. Martin, K. Wang, and X. Jiang. Vibration compensating beam scanning interferometer for surface measurement. Applied Optics, 47(7):888–893, 2008.Web of ScienceCrossrefGoogle Scholar

  • 8.

    F. Xie, J. Ren, Z. Chen, and Q. Feng. Vibration-displacement measurements with a highly stabilised optical fiber michelson interferometer system. Optics & Laser Technology, 42:208–213, 2010.Web of ScienceCrossrefGoogle Scholar

  • 9.

    X. Jiang, K. Wang, F. Gao, and H. Muhamedsalih. Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise. Applied Optics, 49(15):2903–2909, 2010.Web of ScienceCrossrefGoogle Scholar

  • 10.

    D. Wu, R. Zhu, L. Chen, and J. Li. Transverse spatial phase-shifting method used in vibration-compensated interferometer. International Journal for Light and Electron Optics, 115(8):343–346, 2004.CrossrefGoogle Scholar

  • 11.

    T. Suzuki, T. Okada, O. Sasaki, and T. Maruyama. Real-time vibration measurement using a feedback type of laser diode interferometer with an optical fiber. Opt. Eng., 36(9):2496–2502, 1997.CrossrefGoogle Scholar

  • 12.

    J. II Mun, T. Jo, T. Kim, and H. J. Pahk. Residual vibration reduction of white-light scanning interferometry by input shaping. Optics Express, 23(1):464–470, 2015.CrossrefWeb of ScienceGoogle Scholar

  • 13.

    Z. Song, T. Guo, X. Fu, and X. Hu. Residual vibration control based on a global search method in a high-speed white light scanning interferometer. Applied Optics, 57(13):3415–3422, 2018.Web of ScienceCrossrefGoogle Scholar

  • 14.

    P. Schäfer, D. Broschart, and J. Seewig. Aktive Schwingungsdämpfung eines Weißlichtinterferometers. Technisches Messen, 80:16–20, 2013.CrossrefGoogle Scholar

  • 15.

    A. Olszak and J. Schmit. Scanning interferometry with reference signal, 2003. US Patent 6,624,894 B2, Sep. 23, 2003.

  • 16.

    A. Olszak and J. Schmit. High-stability white-light interferometry with reference signal for real-time correction of scanning errors. Opt. Eng., 42(1):54–59, 2003.CrossrefGoogle Scholar

  • 17.

    J. Schmit, A. G. Olszak, and S. McDermed. White light interferometry with reference signal. Proc. of SPIE, 4777:102–109, 2002.CrossrefGoogle Scholar

  • 18.

    D. Chen, J. Schmit, and M. Novak. Real-time scanner error correction in white light interferometry. Proc. of SPIE, 9276(92760I), 2014.Google Scholar

  • 19.

    L. L. Deck. Suppressing phase errors from vibration in phase-shifting interferometry. Applied Optics, 48(20):3948–3960, 2009.Web of ScienceCrossrefGoogle Scholar

  • 20.

    H. Broistedt, N. R. Doloca, S. Strube, and R. Tutsch. Random-phase-shift Fizeau interferometer. Applied Optics, 50(36):6564–6575, 2011.CrossrefWeb of ScienceGoogle Scholar

  • 21.

    H. Broistedt and R. Tutsch. Zufalls-Phasenschiebe-Interferometer zur Messung sphärischer Oberflächen. Sensoren und Messsysteme, 2014.

  • 22.

    S. Beer, S. Waldis, and P. Seitz. Video-rate optical coherence tomography imaging with smart pixels. Proceedings of SPIE-OSA Biomedical Optics, 5140(69), 2003.Google Scholar

  • 23.

    P. Lambelet and R. Moosburger. Fast and accurate line scanner based on white light interferometry. Proc. of SPIE, 8788(87880Q), 2013.Google Scholar

  • 24.

    J. Park and S. Kim. Vibration-desensitized interferometer by continuous phase shifting with high-speed fringe capturing. Optics Letters, 35(1):19–21, 2009.Web of ScienceGoogle Scholar

  • 25.

    R. Smythe and R. Moore. Instantaneous phase measuring interferometry. Opt. Eng., 23(4):361–364, 1984.Google Scholar

  • 26.

    P. Szwaykowski, R. J. Castonguay, and F. N. Bushroe. Simultaneous phase shifting module for use in interferometry, 2003. US Patent 7,483,145 B2, Nov. 26, 2003.

  • 27.

    C. L. Koliopoulos. Simultaneous phase-shift interferometer. Proc. of SPIE, 1531:1531 – 9, 1992.Google Scholar

  • 28.

    B. K. A. Ngoi, K. Venkatakrishnan, N. R. Sivakumar, and T. Bo. Instantaneous phase shifting arrangement for microstructure profiling of flat surfaces. Optics Communications, 190:109–116, 2001.CrossrefGoogle Scholar

  • 29.

    C. Dunsby, Y. Gu, and P. M. W. French. Single-shot phase-stepped wide-field coherence-gated imaging. Optics Express, 11(2):105–115, 2003.CrossrefGoogle Scholar

  • 30.

    J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant. Pixelated phase-mask dynamic interferometer. Proc. of SPIE, 5531:304–314, 2004.CrossrefGoogle Scholar

  • 31.

    E. Cuche, P. Marquet, and C. Depeursinge. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of fresnel off-axis holograms. Applied Optics, 38(34):6994–7001, 1999.CrossrefGoogle Scholar

  • 32.

    T. Colomb, J. Kühn, F. Charriere, and C. Depeursinge. Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram. Optics Express, 14(10):4300–4306, 2006.CrossrefGoogle Scholar

  • 33.

    J. Kühn, T. Colomb, F. Montfort, F. Charriere, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition. Optics Express, 15(12):7231–7242, 2007.Web of ScienceCrossrefGoogle Scholar

  • 34.

    J. Kühn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, C. Depeursinge, and P. Marquet. Axial sub-nanometer accuracy in digital holographic microscopy. Meas. Sci. Technol., 19(074007):8, 2008.Web of ScienceGoogle Scholar

  • 35.

    Cree Inc. Pulsed Over-Current Driving of Cree XLamp LEDs: Information and Cautions, 2016. Application Note.

  • 36.

    D. C. Rife and R. R. Boorstyn. Single-tone parameter estimation from discrete-time observations. IEEE Transactions on Information Theory, 20(5):591–598, 1974.CrossrefGoogle Scholar

  • 37.

    P. de Groot. Design of error-compensating algorithms for sinusoidal phase shifting interferometry. Applied Optics, 48(35):6788–6796, 2009.CrossrefWeb of ScienceGoogle Scholar

  • 38.

    H. Fassbender. On numerical methods for discrete least-squares approximation by trigonometric polynomials. Mathematics of Computation, 66(218):719–741, 1997.CrossrefGoogle Scholar

  • 39.

    S. Tereschenko, P. Lehmann, L. Zellmer, and A. Brückner-Foit. Passive vibration compensation in scanning white-light interferometry. Applied Optics, 55(23):6172–6182, 2016.Web of ScienceCrossrefGoogle Scholar

  • 40.

    P. de Groot. Coherence Scanning Interferometry. In R. Leach, editor, Optical Measurement of Surface Topography, chapter 9, pages 187–208. Springer, Berlin, Heidelberg, 2011.Google Scholar

  • 41.

    S. Tereschenko, P. Lehmann, P. Gollor, and P. Kühnhold. Vibration Compensated High-Resolution Scanning White-light Linnik-Interferometer. Proc. of SPIE, 10329(10329-147), 2017.Google Scholar

About the article

Dr.-Ing. Stanislav Tereschenko

Dr.-Ing. Stanislav Tereschenko ist wissenschaftlicher Mitarbeiter am Fachgebiet Messtechnik der Universität Kassel, Fachbereich 16 Elektrotechnik/Informatik. Hauptarbeitsgebiete: Weißlichtinterferometrie (WLI), Störschwingungskompensation in der WLI, Signalverarbeitung in der WLI.

Prof. Dr.-Ing. habil. Peter Lehmann

Prof. Dr.-Ing. habil. Peter Lehmann ist Leiter des Fachgebiets Messtechnik der Universität Kassel, Fachbereich 16 Elektrotechnik/Informatik. Hauptarbeitsgebiete: Optische Messtechnik, Interferometrie, Faseroptische Sensoren.


Received: 2018-12-20

Accepted: 2019-02-21

Published Online: 2019-03-14

Published in Print: 2019-04-04


Funding Source: Deutsche Forschungsgemeinschaft

Award identifier / Grant number: LE 992/9-2

Die Autoren danken der Deutschen Forschungsgemeinschaft (DFG) für die Förderung des Projektes “3D-Analyse von Oberflächenschädigungen in metallischen Werkstoffen unter Ermüdungsbelastung” (Förderkennzeichen LE 992/9-2).


Citation Information: tm - Technisches Messen, Volume 86, Issue 4, Pages 197–207, ISSN (Online) 2196-7113, ISSN (Print) 0171-8096, DOI: https://doi.org/10.1515/teme-2018-0085.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in