1.
M. Davidson, K. Kaufman, I. Mazor, and F. Cohen. An application of interference microscopy to integrated circuit inspection and metrology. Proc. of SPIE, 0775:233–247, 1987.CrossrefGoogle Scholar
2.
S. S. C. Chim and G. S. Kino. Phase measurements using the mirau correlation microscope. Applied Optics, 30(16):2197–2201, 1991.CrossrefGoogle Scholar
3.
P. de Groot, X. Colonna de Lega, J. Kramer, and M. Turzhitsky. Determination of fringe order in white-light interference microscopy. Applied Optics, 41(22):4571–4578, 2002.CrossrefGoogle Scholar
4.
S. Tereschenko. Digitale Analyse periodischer und transienter Messsignale anhand von Beispielen aus der optischen Präzisionsmesstechnik. Dissertation, Universität Kassel, 2017.
5.
G. C. Cole, J. H. Burge, and L. R. Dettmann. Vibration stabilization of a phase shifting interferometer for large optics. Proc. of SPIE, 3134:438–446, 1997.CrossrefGoogle Scholar
6.
C. Zhao and J. H. Burge. Vibration-compensated interferometer for measuring cryogenic mirrors. Proc. of SPIE, 3782:399–406, 1999.CrossrefGoogle Scholar
7.
H. Martin, K. Wang, and X. Jiang. Vibration compensating beam scanning interferometer for surface measurement. Applied Optics, 47(7):888–893, 2008.Web of ScienceCrossrefGoogle Scholar
8.
F. Xie, J. Ren, Z. Chen, and Q. Feng. Vibration-displacement measurements with a highly stabilised optical fiber michelson interferometer system. Optics & Laser Technology, 42:208–213, 2010.Web of ScienceCrossrefGoogle Scholar
9.
X. Jiang, K. Wang, F. Gao, and H. Muhamedsalih. Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise. Applied Optics, 49(15):2903–2909, 2010.Web of ScienceCrossrefGoogle Scholar
10.
D. Wu, R. Zhu, L. Chen, and J. Li. Transverse spatial phase-shifting method used in vibration-compensated interferometer. International Journal for Light and Electron Optics, 115(8):343–346, 2004.CrossrefGoogle Scholar
11.
T. Suzuki, T. Okada, O. Sasaki, and T. Maruyama. Real-time vibration measurement using a feedback type of laser diode interferometer with an optical fiber. Opt. Eng., 36(9):2496–2502, 1997.CrossrefGoogle Scholar
12.
J. II Mun, T. Jo, T. Kim, and H. J. Pahk. Residual vibration reduction of white-light scanning interferometry by input shaping. Optics Express, 23(1):464–470, 2015.CrossrefWeb of ScienceGoogle Scholar
13.
Z. Song, T. Guo, X. Fu, and X. Hu. Residual vibration control based on a global search method in a high-speed white light scanning interferometer. Applied Optics, 57(13):3415–3422, 2018.Web of ScienceCrossrefGoogle Scholar
14.
P. Schäfer, D. Broschart, and J. Seewig. Aktive Schwingungsdämpfung eines Weißlichtinterferometers. Technisches Messen, 80:16–20, 2013.CrossrefGoogle Scholar
15.
A. Olszak and J. Schmit. Scanning interferometry with reference signal, 2003. US Patent 6,624,894 B2, Sep. 23, 2003.
16.
A. Olszak and J. Schmit. High-stability white-light interferometry with reference signal for real-time correction of scanning errors. Opt. Eng., 42(1):54–59, 2003.CrossrefGoogle Scholar
17.
J. Schmit, A. G. Olszak, and S. McDermed. White light interferometry with reference signal. Proc. of SPIE, 4777:102–109, 2002.CrossrefGoogle Scholar
18.
D. Chen, J. Schmit, and M. Novak. Real-time scanner error correction in white light interferometry. Proc. of SPIE, 9276(92760I), 2014.Google Scholar
19.
L. L. Deck. Suppressing phase errors from vibration in phase-shifting interferometry. Applied Optics, 48(20):3948–3960, 2009.Web of ScienceCrossrefGoogle Scholar
20.
H. Broistedt, N. R. Doloca, S. Strube, and R. Tutsch. Random-phase-shift Fizeau interferometer. Applied Optics, 50(36):6564–6575, 2011.CrossrefWeb of ScienceGoogle Scholar
21.
H. Broistedt and R. Tutsch. Zufalls-Phasenschiebe-Interferometer zur Messung sphärischer Oberflächen. Sensoren und Messsysteme, 2014.
22.
S. Beer, S. Waldis, and P. Seitz. Video-rate optical coherence tomography imaging with smart pixels. Proceedings of SPIE-OSA Biomedical Optics, 5140(69), 2003.Google Scholar
23.
P. Lambelet and R. Moosburger. Fast and accurate line scanner based on white light interferometry. Proc. of SPIE, 8788(87880Q), 2013.Google Scholar
24.
J. Park and S. Kim. Vibration-desensitized interferometer by continuous phase shifting with high-speed fringe capturing. Optics Letters, 35(1):19–21, 2009.Web of ScienceGoogle Scholar
25.
R. Smythe and R. Moore. Instantaneous phase measuring interferometry. Opt. Eng., 23(4):361–364, 1984.Google Scholar
26.
P. Szwaykowski, R. J. Castonguay, and F. N. Bushroe. Simultaneous phase shifting module for use in interferometry, 2003. US Patent 7,483,145 B2, Nov. 26, 2003.
27.
C. L. Koliopoulos. Simultaneous phase-shift interferometer. Proc. of SPIE, 1531:1531 – 9, 1992.Google Scholar
28.
B. K. A. Ngoi, K. Venkatakrishnan, N. R. Sivakumar, and T. Bo. Instantaneous phase shifting arrangement for microstructure profiling of flat surfaces. Optics Communications, 190:109–116, 2001.CrossrefGoogle Scholar
29.
C. Dunsby, Y. Gu, and P. M. W. French. Single-shot phase-stepped wide-field coherence-gated imaging. Optics Express, 11(2):105–115, 2003.CrossrefGoogle Scholar
30.
J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant. Pixelated phase-mask dynamic interferometer. Proc. of SPIE, 5531:304–314, 2004.CrossrefGoogle Scholar
31.
E. Cuche, P. Marquet, and C. Depeursinge. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of fresnel off-axis holograms. Applied Optics, 38(34):6994–7001, 1999.CrossrefGoogle Scholar
32.
T. Colomb, J. Kühn, F. Charriere, and C. Depeursinge. Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram. Optics Express, 14(10):4300–4306, 2006.CrossrefGoogle Scholar
33.
J. Kühn, T. Colomb, F. Montfort, F. Charriere, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition. Optics Express, 15(12):7231–7242, 2007.Web of ScienceCrossrefGoogle Scholar
34.
J. Kühn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, C. Depeursinge, and P. Marquet. Axial sub-nanometer accuracy in digital holographic microscopy. Meas. Sci. Technol., 19(074007):8, 2008.Web of ScienceGoogle Scholar
35.
Cree Inc. Pulsed Over-Current Driving of Cree XLamp LEDs: Information and Cautions, 2016. Application Note.
36.
D. C. Rife and R. R. Boorstyn. Single-tone parameter estimation from discrete-time observations. IEEE Transactions on Information Theory, 20(5):591–598, 1974.CrossrefGoogle Scholar
37.
P. de Groot. Design of error-compensating algorithms for sinusoidal phase shifting interferometry. Applied Optics, 48(35):6788–6796, 2009.CrossrefWeb of ScienceGoogle Scholar
38.
H. Fassbender. On numerical methods for discrete least-squares approximation by trigonometric polynomials. Mathematics of Computation, 66(218):719–741, 1997.CrossrefGoogle Scholar
39.
S. Tereschenko, P. Lehmann, L. Zellmer, and A. Brückner-Foit. Passive vibration compensation in scanning white-light interferometry. Applied Optics, 55(23):6172–6182, 2016.Web of ScienceCrossrefGoogle Scholar
40.
P. de Groot. Coherence Scanning Interferometry. In R. Leach, editor, Optical Measurement of Surface Topography, chapter 9, pages 187–208. Springer, Berlin, Heidelberg, 2011.Google Scholar
41.
S. Tereschenko, P. Lehmann, P. Gollor, and P. Kühnhold. Vibration Compensated High-Resolution Scanning White-light Linnik-Interferometer. Proc. of SPIE, 10329(10329-147), 2017.Google Scholar
Comments (0)